幫助中心 | 我的帳號 | 關於我們

粒子物理學中的規範理論實用導論(第2卷第4版)(英文版)

  • 作者:(英)伊恩·艾奇森//安東尼·海伊|責編:陳亮
  • 出版社:世圖出版公司
  • ISBN:9787519283711
  • 出版日期:2022/08/01
  • 裝幀:平裝
  • 頁數:504
人民幣:RMB 139 元      售價:
放入購物車
加入收藏夾

內容大鋼
    The main focus of the second volume of this fourth edition,as in the third,is on the two non-Abelian quantum gauge field theories of the Standard Model -that is,QCD and the electroweak theory of Glashow,Salam and Weinberg,We preserve the same division into four parts: non-Abelian symmetries,both global and local; QCD and the renormalization group; spontaneously broken symmetry; and weak interaction phenomenology and the electroweak theory.
    However,the book has always combined theoretical development with dis-cussion of relevant experimental results. And it is on the experimental side that most progress has been made in the ten years since the third edition appeared-first of all,in the study of CP violation in B-meson physics,and in neutrino oscillations. The inclusion of these results,and the increasing im-portance of the topics,have required some reorganization,and a new chapter (21) devoted wholly to them. We concentrate mainly on CP violation in B-meson decays,particularly on the determination of the angles of the unitarity triangle from B-meson oscillations. CP-violation in K-meson systems is also discussed. In the neutrino sector,we describe some of the principal experi-ments which have led to our current knowledge of the mass-squared differences and the mixing angles. In discussing weak interaction phenomenology,we keep in view the possibility that neutrinos may turn out to be Majorana particles,an outcome for which we have prepared the reader in (new) chapters 4 and 7 of volume 1.

作者介紹
(英)伊恩·艾奇森//安東尼·海伊|責編:陳亮

目錄
Preface
V  Non-Abelian Symmetries
12  Global Non-Abelian Symmetries
  12.1 The Standard Model
  12.2 The flavour symmetry SU(2)f
    12.2.1 The nucleon isospin doublet and the group SU(2)
    12.2.2 Larger (higher-dimensional) multiplets of SU(2) in nuclear physics
    12.2.3 Isospin in particle physics: flavour SU(2)f
  12.3 Flavour SU(3)f
  12.4 Non-Abelian global symmetries in Lagrangian quantum field theory
    12.4.1 SU(2)f and SU(3)f
    12.4.2 Chiral symmetry
    Problems
13  Local Non-Abelian (Gauge) Symmetries
  13.1 Local SU(2) symmetry
    13.1.1  The covariant derivative and interactions with matter
    13.1.2 The non-Abelian field strength tensor
  13.2 Local SU(3) Symmetry
  13.3 Local non-Abelian symmetries in Lagrangian quantum field
    theory
    13.3.1 Local SU(2) and SU(3) Lagrangians
    13.3.2  Gauge field self-interactions
    13.3.3  Quantizing non-Abelian gauge fields
    Problems
VI  QCD and the Renormalization Group
14  QCD I: Introduction, Tree Graph Predictions, and Jets
  14.1 The colour degree of freedom
  14.2 The dynamics of colour
    14.2.1  Colour as an SU(3) group
    14.2.2 Global SU(3)c invariance, and 'scalar gluons'
    14.2.3 Local SU(3)o invariance: the QCD Lagrangian
    14.2.4 The θ-term
  14.3 Hard scattering processes, QCD tree graphs, and jets
    14.3.1 Introduction
    14.3.2 Two-jet events in pp collisions
    14.3.3 Three-jet events in pp collisions
  14.4 3-jet events in e+e- annihilation
    14.4.1 Calculation of the parton-level cross section
    14.4.2 Soft and collinear divergences
  14.5 Definition of the two-jet cross section in e+e- annihilation
  14.6 Further developments
    14.6.1 Test of non-Abelian nature of QCD in e+e- → 4 jets.
    14.6.2 Jet algorithms
    Problems
15  QCD II: Asymptotic Freedom, the Renormalization Group, and Scaling Violations
  15.1 Higher-order QCD corrections to a(e+e- --+ hadrons): large
    logarithms
  15.2 The renormalization group and related ideas in QED
    15.2.1 Where do the large logs come from?
    15.2.2  Changing the renormalization scale

    15.2.3 The RGE and large _q2 behaviour in QED
  15.3 Back to QCD: asymptotic freedom
    15.3.1 One loop calculation
    15.3.2 Higher-order calculations, and experimental comparison
  15.4 σ(e+e- → hadrons) revisited
  15.5 A more general form of the RGE: anomalous dimensions and running masses
  15.6 QCD corrections to the parton model predictions for deep inelastic scattering: scaling violations
    15.6.1 Uncancelled mass singularities at order as
    15.6.2  Factorization, and the order α8 DGLAP equation
    15.6.3  Comparison with experiment
    Problems
16 Lattice Field Theory, and the Renormalization Group Revisited
  16.1 Introduction
  16.2 Discretization
    16.2.1 Scalar fields
    16.2.2 Dirac fields
    16.2.3 Gauge fields
  16.3 Representation of quantum amplitudes
    16.3.1 Quantum mechanics
    16.3.2 Quantum field theory
    16.3.3  Connection with statistical mechanics
  16.4 Renormalization, and the renormalization group, on the lattice
    16.4.1 Introduction
    16.4.2 Two one-dimensional examples
    16.4.3 Connections with particle physics
  16.5 Lattice QCD
    16.5.1 Introduction, and the continuum limit
    16.5.2 The static qq potential
    16.5.3 Calculation of α(MZ 2)
    16.5.4 Hadron masses
    Problems
VII  Spontaneously Broken Symmetry
17  Spontaneously Broken Global Symmetry
  17.1 Introduction
  17.2 The Fabri-Picasso theorem
  17.3 Spontaneously broken symmetry in condensed matter physics
    17.3.1 The ferromagnet
    17.3.2 The Bogoliubov superfluid
  17.4 Goldstone's theorem
  17.5 Spontaneously broken global U(1) symmetry: the Goldstone model
  17.6 Spontaneously broken global non-Abelian symmetry
  17.7 The BCS superconducting ground state
  Problems
18  Chiral Symmetry Breaking
  18.1 The Nambu analogy
    18.1.1 Two flavour QCD and SU(2)fL × SU(2)fR
  18.2 Pion decay and the Goldberger-Treiman relation
  18.3 Effective Lagrangians
    18.3.1 The linear and non-linear a-models
    18.3.2 Inclusion of explicit symmetry breaking: masses for pions and quarks

    18.3.3 Extension to SU(3)fL × SU(3)fR
  18.4 Chiral anomalies
    Problems
19  Spontaneously Broken Local Symmetry
  19.1 Massive and massless vector particles
  19.2 The generation of 'photon mass' in a superconductor: Ginzburg-Landau theory and the Meissner effect
  19.3 Spontaneously broken local U(1) symmetry: the Abelian Higgs model
  19.4 Flux quantization in a superconductor
  19.5 't Hooft's gauges
  19.6 Spontaneously broken local SU(2) x U(1) symmetry
    Problems
VIII  Weak Interactions and the Electroweak Theory'.
20 Introduction to the Phenomenology of Weak Interactions
  20.1 Fermi's 'current-current' theory of nuclear 3-decay, and its generalizations
  20.2 Parity violation in weak interactions, and V-A theory
    20.2.1 Parity violation
    20.2.2 V-A theory: chirality and helicity
  20.3 Lepton number and lepton flavours
  20.4 The universal current × current theory for weak interactions of leptons
  20.5 Calculation of the cross section for Vμ + e- → μ- + Ve
  20.6 Leptonic weak neutral currents
  20.7 Quark weak currents
    20.7.1 Two generations
    20.7.2 Deep inelastic neutrino scattering
    20.7.3 Three generations
  20.8 Non-leptonic weak interactions Problems
21 CP Violation and Oscillation Phenomena
  21.1 Direct CP violation in B decays
  21.2 CP violation in B meson oscillations
     21.2.1 Time-dependent mixing formalism
     21.2.2 Determination of the angles α(φ2) and β(φ1) of the unitarity triangle
  21.3 CP violation in neutral K-meson decays
  21.4 Neutrino mixing and oscillations
     21.4.1 Neutrino mass and mixing
     21.4.2 Neutrino oscillations: formulae
     21.4.3 Neutrino oscillations: experimental results
     21.4.4 Matter effects in neutrino oscillations
     21.4.5 Further developments
     Problems
22 The Glashow-Salam-Weinberg Gauge Theory of Electroweak Interactions
  22.1 Difficulties with the current-current and 'naive' IVB models
     22.1.1 Violations of unitarity
     22.1.2 The problem of non-renormalizability in weak interactions
   22.2 The SU(2) × U(1) electroweak gauge theory
    22.2.1 Quantum number assignments; Higgs, W and Z masses
    22.2.2 The leptonic currents (massless neutrinos): relation to current-current model
    22.2.3 The quark currents
   22.3 Simple (tree-level) predictions
   22.4 The discovery of the W+ and Z0 at the CERN pp collider
    22.4.1 Production cross sections for W and Z in pp colliders

    22.4.2 Charge asymmetry in W± decay
    22.4.3 Discovery of the W± and Z0 at the pp collider, and their properties
   22.5 Fermion masses
    22.5.1 One generation
    22.5.2 Three-generation mixing
   22.6 Higher-order corrections
   22.7 The top quark
  22.8 The Higgs sector
    22.8.1 Introduction
    22.8.2 Theoretical considerations concerning mH
    22.8.3 Higgs boson searches and the 2012 discovery
    Problems
M Group Theory
  M.1 Definition and simple examples
  M.2 Lie groups
  M.3 Generators of Lie groups
  M.4 Examples
    M.4.1 SO(3) and three-dimensional rotations
    M.4.2 SU(2)
    M.4.3 SO(4): The special orthogonal group in four dimensions
    M.4.4 The Lorentz group
    M.4.5 SU(3)
  M.5 Matrix representations of generators, and of Lie groups
  M.6 The Lorentz group
  M.7 The relation between SU(2) and SO(3)
N Geometrical Aspects of Gauge Fields
  N.1 Covariant derivatives and coordinate transformations
  N.2 Geometrical curvature and the gauge field strength tensor
O Dimensional Regularization
P Grassmann Variables
Q Feynman Rules for Tree Graphs in QCD and the Electroweak Theory
  Q.1 QCD
    Q.1.1 External particles
    Q.1.2  Propagators
    Q.1.3 Vertices
  Q.2 The electroweak theory
    Q.2.1 External particles
    0.2.2 Propagators
    Q.2.3 Vertices
References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032