幫助中心 | 我的帳號 | 關於我們

粒子物理學中的規範理論實用導論(第1卷第4版)(英文版)

  • 作者:(英)伊恩·艾奇森//安東尼·海伊|責編:陳亮
  • 出版社:世圖出版公司
  • ISBN:9787519283704
  • 出版日期:2022/08/01
  • 裝幀:平裝
  • 頁數:438
人民幣:RMB 129 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書講述了粒子物理標準模型,第4版在提供先進粒子物理理論介紹的同時,納入了大量的實驗結果,使理論更為具象。從相對論量子力學到標準模型的前沿,該版對每一種理論均討論了主要概念要點,並詳細介紹了從第一原理出發的物理量的實際計算,且與實驗結果進行了對比。為粒子物理標準模型中的三種規範理論提供了易理解且實用的介紹。有助於讀者提高計算技能和物理洞察力。本書共分為2卷:
    第1卷新增了相對論量子力學中的洛倫茲變換和離散對稱性介紹,隨著實驗結果的更新,該版還在早期引入了馬約拉納費米子,使材料適合於相對論量子力學。
    讀者對象:物理學專業本科生和研究生。

作者介紹
(英)伊恩·艾奇森//安東尼·海伊|責編:陳亮

目錄
Preface
I  Introductory Survey, Electromagnetism as a Gauge  Theory, and Relativistic Quantum Mechanics
  1  The Particles and Forces of the Standard Model
    1.1  Introduction: the Standard Model
    1.2  The fermions of the Standard Model
      1.2.1  Leptons
      1.2.2  Quarks
    1.3  Particle interactions in the Standard Model
      1.3.1  Classical and quantum fields
      1.3.2  The Yukawa theory of force as virtual quantum exchange
      1.3.3  The one-quantum exchange amplitude
      1.3.4  Electromagnetic interactions
      1.3.5  Weak interactions
      1.3.6  Strong interactions
      1.3.7  The gauge bosons of the Standard Model
    1.4  Renormalization and the Higgs sector of the Standard Model
      1.4.1  Renormalization
      1.4.2  The Higgs boson of the Standard Model
    1.5  Summary
    Problems
  2  Electromagnetism as a Gauge Theory
    2.1  Introduction
    2.2  The Maxwell equations: current conservation
    2.3  The Maxwell equations: Lorentz covariance and gauge invariance
    2.4  Gauge invariance (and covariance) in quantum mechanics .
    2.5  The argument reversed: the gauge principle
    2.6  Comments on the gauge principle in electromagnetism
    Problems
  3  Relativistic Quantum Mechanics
    3.1  The Klein-Gordon equation
      3.1.1  Solutions in coordinate space
      3.1.2  Probability current for the KG equation
    3.2  The Dirac equation
      3.2.1  Free-particle solutions
      3.2.2  Probability current for the Dirac equation
    3.3  Spin
    3.4  The negative-energy solutions
      3.4.1  Positive-energy spinors
      3.4.2  Negative-energy spinors
      3.4.3  Dirac's interpretation of the negative-energy solutions of the Dirac equation
      3.4.4  Feynman's interpretation of the negative-energy solutions of the KG and Dirac equations
    3.5  Inclusion of electromagnetic interactions via the gauge principle: the Dirac prediction of g = 2 for the electron Problems
  4  Lorentz Transformations and Discrete Symmetries
    4.1  Lorentz transformations
      4.1.1  The KG equation
      4.1.2  The Dirac equation
    4.2  Discrete transformations: P, C and T
      4.2.1  Parity
      4.2.2  Charge conjugation
      4.2.3  CP

      4.2.4  Time reversal
      4.2.5  CPT
    Problems
II  Introduction to Quantum Field Theory
  5  Quantum Field Theory I: The Free Scalar Field
    5.1  The quantum field: (i) descriptive
    5.2  The quantum field: (ii) Lagrange-Hamilton formulation
      5.2.1  The action principle: Lagrangian particle mechanics
      5.2.2  Quantum particle mechanics k la Heisenberg-Lagrange-Hamilton
      5.2.3  Interlude: the quantum oscillator
      5.2.4  Lagrange-Hamilton classical field mechanics
      5.2.5  Heisenberg-Lagrange--Hamilton quantum field mechanics
    5.3  Generalizations: four dimensions, relativity and mass
    Problems
  6  Quantum Field Theory II: Interacting Scalar Fields
    6.1  Interactions in quantum field theory: qualitative introduction
    6.2  Perturbation theory for interacting fields: the Dyson expansion
            of the S-matrix
      6.2.1  The interaction picture
      6.2.2  The S-matrix and the Dyson expansion
    6.3  Applications to the 'ABC' theory
      6.3.1  The decay C - A + B
      6.3.2  A + B - A  B scattering: the amplitudes
      6.3.3  A  B --+ A  B scattering: the Yukawa exchange mechanism, s and u channel processes
      6.3.4  A + B  A  B scattering: the differential cross section
      6.3.5  A  B - A  B scattering: loose ends
    Problems
  7  Quantum Field Theory III: Complex Scalar Fields, Dirac and Maxwell Fields; Introduction of Electromagnetic Interactions
    7.1  The complex scalar field: global U(1) phase invariance, particles and antiparticles
    7.2  The Dirac field and the spin-statistics connection
    7.3  The Maxwell field A(x)
      7.3.1  The classical field case
      7.3.2  Quantizing A'(x)
    7.4  Introduction of electromagnetic interactions
    7.5  P, C and T in quantum field theory
      7.5.1  Parity
      7.5.2  Charge conjugation
      7.5.3  Time reversal
    Problems
III  Tree-Level Applications in QED
  8  Elementary Processes in Scalar and Spinor Electrodynamics
    8.1  Coulomb scattering of charged spin-0 particles
      8.1.1  Coulomb scattering of s+ (wavefunction approach)
      8.1.2  Coulomb scattering of s+ (field-theoretic approach)
      8.1.3  Coulomb scattering of s-
    8.2  Coulomb scattering of charged spin- particles
    
    8.3  e-s+ scattering
      8.3.1  The amplitude for e-s+ - e-s+
      8.3.2  The cross section for e-s+ - e-s+
    8.4  Scattering from a non-point-like object: the pion form factor in e-Tr+ -+ e-r+
      8.4.1  e- scattering from a charge distribution
      8.4.2  Lorentz invariance
      8.4.3  Current conservation
    8.5  The form factor in the time-like region: e+e- -+ r+Tr- and crossing symmetry
    8.6  Electron Compton scattering
      8.6.1  The lowest-order amplitudes
      8.6.2  Gauge invariance
      8.6.3  The Compton cross section
    8.7  Electron muon elastic scattering
    8.8  Electron-proton elastic scattering and nucleon form factors
      8.8.1  Lorentz invariance
      8.8.2  Current conservation
    Problems
  9  Deep Inelastic Electron-Nucleon Scattering and the Parton Model
    9.1  Inelastic electron-proton scattering: kinematics and structure functions
    9.2  Bjorken scaling and the parton model
    9.3  Partons as quarks and gluons
    9.4  The Drell-Yan process
    9.5  e+e- annihilation into hadrons
    Problems
IV  Loops and Renormalization
  10  Loops and Renormalization I: The ABC Theory
    10.1  The propagator correction in ABC theory
      10.1.1  The O(g2) self-energy II[c2](q2)
      10.1.2  Mass shift
      10.1.3  Field strength renormalization
    10.2  The vertex correction
    10.3  Dealing with the bad news: a simple example
      10.3.1  Evaluating H[](q2)
      10.3.2  Reguiarization and renormalization
    10.4  Bare and renormalized perturbation theory
      10.4.1  Reorganizing perturbation theory
      10.4.2  The O(g2h) renormalized self-energy revisited: how counter terms are determined by renormalization conditions
    10.5  Renormalizability
    Problems
  11  Loops and Renormalization II: QED
    11.1  Counter terms
    11.2  The O(e2) fermion self-energy
    11.3  The O(e2) photon self-energy
    11.4  The O(e2) renormalized photon self-energy
    11.5  The physics of 1=I[72] (q2)
      11.5.1  Modified Coulomb's law
      11.5.2  Radiatively induced charge form factor
      11.5.3  The running coupling constant
      11.5.4  1=I[72]'- in the s-channel
    11.6  The O(e2) vertex correction, and Z1 = Z

    11.7  The anomalous magnetic moment and tests of QED
    11.8  Which theories are renormalizable - and does it matter?
    Problems
A  Non-relativistic Quantum Mechanics
B  Natural Units
C  Maxwell's Equations: Choice of Units
D  Special Relativity: Invariance and Covariance
E  Dirac J-Function
F  Contour Integration
G  Green Functions
H  Elements of Non-relativistic Scattering Theory
  H.1  Time-independent formulation and differential cross section .
  H.2  Expression for the scattering amplitude: Born approximation
  H.3  Time-dependent approach
I  The SchrSdinger and Heisenberg Pictures
J  Dirac Algebra and Trace Identities
  J.1  Dirac algebra
    J.1.1  V matrices
    J.1.2  V5 identities
    J.1.3  Hermitian conjugate of spinor matrix elements
    J.1.4  Spin sums and projection operators
  J.2  Trace theorems
K  Example of a Cross Section Calculation
  K.1  The spin-averaged squared matrix element
  K.2  Evaluation of two-body Lorentz-invariant phase space in 'laboratory' variables
L  Feynman Rules for Tree Graphs in QED
  L.1  External particles
  L.2  Propagators
  L.3  Vertices
References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032