內容大鋼
《Chemical Engineering Thermodynamics》(化工熱力學)共8章,第1章介紹了化工熱力學的用途、研究內容、研究特點和基本定律;第2章交代了純物質的相態變化、純物質的p-V-T關係、氣體的狀態方程和對比態原理及其應用;第3章詳細討論了熱力學性質間的關係和熱力學性質的計算;第4章介紹了剩餘性質的定義,闡述了多組分混合物的熱力學、混合物的實際熱力學行為,不同二元混合物的混合摩爾體積、偏摩爾吉布斯能、偏摩爾體積和焓的實驗測定,從實驗數據計算無限稀釋部分摩爾焓、混合物中組分的吉布斯能和逸度的估計以及偏摩爾吉布斯能和逸度;第5章全面介紹了相平衡判據的數學表達式、化學勢和逸度及其在相平衡建模中的應用,講述了測定液體和固體逸度、分佈係數、相對揮發性以及熱力學一致性檢驗。第5章主要涉及了相平衡的相關定律和方程;第6章解釋了熱機的不可逆性的比率、系統的?變化、?在壓縮過程中發生變化、?遞減原理與?破壞以及?衡算及?效率;第7章介紹了用簡單模型分析製冷循環以及卡諾循環和它在工程中的價值,並對蒸汽和聯合動力循環、卡諾蒸汽循環、製冷循環和熱泵系統進行了相應的解釋;第8章討論了化學反應平衡基礎、化學反應的平衡準則、平衡常數和工藝參數等條件對化學平衡組成的影響。
《Chemical Engineering Thermodynamics》注重理論原理與實際應用的結合,不僅能夠為讀者提供豐富的熱力學基礎知識,還能為經驗豐富的化工工程師提供所需的專業知識。本書附有大量的例題,並且都系統地給出了解答步驟。讀者能夠通過本書迅速獲取化工熱力學的知識內容,適合自學,同時也是學習和掌握專業英語的高效途徑。
《Chemical Engineering Thermodynamics》(化工熱力學)可作為化工及相關專業的本科生和研究生學習化工熱力學的教材,也可供化工專業的過程開發、合成、優化等領域的科研人員參考。
目錄
Chapter 1 Introduction
1.1 The Category of Chemical Engineering Thermodynamics
1.2 The Role of Thermodynamics in Chemical Engineering
1.3 Fundamental Law of Thermodynamics
1.4 Application of Chemical Engineering Thermodynamics
1.5 The State and System
Chapter 2 The Physical Properties of Pure Substances
2.1 Pure Substance
2.2 Phases of Pure Substance
2.3 Phase-change Processes of Pure Substances
2.4 Property Diagrams for Phase-Change Processes
2.4.1 The T-V Diagram
2.4.2 The p-V Diagram
2.4.3 The p-T Diagram
2.4.4 The p-V-T Surface
2.5 Equation of State
2.5.1 The Ideal-Gas Equation of State
2.5.2 Nonideality of Gases
2.6 Other Equations of State
2.6.1 The van der Waals Equation of State
2.6.2 Redlich-Kwong (RK) Equation of State
2.6.3 The Soave-Redlich-Kwong (SRK) Equation of State
2.6.4 Peng-Robinson (PR) Equation of State
2.6.5 Virial Equation of State
2.6.6 Multiparameter Equation of State
2.7 Principle of Corresponding States and Generalized Association
2.7.1 Principle of Corresponding States
2.7.2 Principle of Corresponding States with Two Parameters
2.7.3 Principle of Corresponding States with Three Parameters
2.7.4 Generalized Compressibility Factor Graph Method
2.7.5 Generalized Virial Coefficient Method
2.8 Application of Aspen Plus in Calculation of Thermodynamic Equation of State
EXERCISES
REFERENCES
Chapter 3 Thermodynamic Properties of Pure Fluids
3.1 Mathematical Relationship between Functions
3.1.1 Partial Differentials
3.1.2 Partial Differential Relations
3.1.3 Fundamental Thermodynamic Relation
3.2 The Maxwell Relations
3.3 The Clapeyron Equation
3.4 General Relations for dU, dH, dA, and dG
3.5 Joule-Thomson Coefficient
3.6 The ?H, ?U, and ?S of Real Gas
3.7 Application of Aspen in Thermodynamic Properties
CONCLUSION
EXERCISES
REFERENCES
Chapter 4 The Thermodynamics of Multicomponent Mixtures
4.1 Excess Property
4.2 Properties Change on Mixing
4.3 Partial Molar Gibbs Free Energy
4.4 Gibbs-Duhem Equation
4.5 The Experimental Measurement of Partial Molar Volume and Enthalpy
4.6 Gibbs Free Energy and Fugacity of a Component in a Mixture
4.6.1 Ideal Gas Mixture
4.6.2 Ideal Mixture and Excess Mixture Properties
4.6.3 Partial Molar Gibbs Free Energy and Fugacity
4.7 Application of Aspen Plus to Thermodynamic Properties of multicomponent Mixtures
CONCLUSION
EXERCISES
REFERENCES
Chapter 5 Phase Equilibrium
5.1 Phase Equilibrium for a Single-Component System
5.1.1 Mathematical Models of Phase Equilibrium
5.1.2 Fugacity and Its Use in Modeling Phase Equilibrium
5.2 Vapor-Liquid Equilibrium
5.2.1 Motivational Example
5.2.2 Raoult's Law and the Presentation of Data
5.2.3 Mixture Critical Points
5.2.4 Lever Rule and the Flash Problem
5.3 Theory and Model of Vapor Liquid Equilibrium of Mixtures: Modified Raoult's law Method
5.3.1 Examples of Incentives
5.3.2 Phase Equilibrium of Mixture
5.3.3 Fugacity of Mixture
5.3.4 Gamma-Phi Modeling
5.3.5 Raoult's law Revisited
5.3.6 Henry's law
5.4 Wilson and Van Laar Equation
5.4.1 Wilson Equation
5.4.2 Relationship between Activity Coefficient and Temperature and Pressure
5.4.3 Van Laar Equation and Regular Solution Theory
5.4.4 Van Der Waals One-Fluid Mixing Rules
5.5 Supplementary Simulation Examples
5.5.1 Vapor-Liquid Equilibrium Calculations Using Activity Coefficient Models
5.5.2 Vapor-Liquid Equilibrium Calculations Using an Equation of State
5.5.3 Prediction of Liquid-Liquid and Vapor-Liquid-Liquid Equilibrium
EXERCISES
REFERENCES
Chapter 6 Energy Analysis of Chemical Process
6.1 The Definition of Entropy Exergy
6.2 Exergy (Work Potential) Associated with Kinetic and Potential Energy
6.3 Reversible Work and Irreversibility
6.4 Second-law Efficiency
6.5 Exergy Change of a System
6.5.1 Exergy of a Fixed Mass: Nonflow (or Closed System) Exergy
6.5.2 Exergy of a Flow Stream: Flow (or Stream) Exergy
6.6 Exergy Transfer by heat, work, and mass
6.6.1 Exergy Transfer by Heat, Q
6.6.2 Exergy Transfer from Work, Xwork
6.6.3 Exergy Transfer by Mass, m
6.7 The Decrease of Exergy Principle and Exergy Destruction
6.8 Exergy Balance: Closed Systems
6.9 Exergy Balance: Control Volumes
6.9.1 Exergy Balance for Steady-Flow Systems
6.9.2 Second-Law Efficiency of Steady-Flow Devices
6.10 Chemical Process Energy Analysis and Aspen Plus
EXERCISES
REFERENCES
Chapter 7 Thermodynamic Processes and Cycles
7.1 Chemical Process Design
7.2 Real Heat Engines
7.2.1 Comparing the Carnot Cycle with the Rankine Cycle
7.2.2 Design Variations in the Rankine Heat Engine
7.3 The Vapor-Compression Cycle
7.4 Power Cycle and Refrigeration Cycle
7.4.1 Thermodynamic Cycles
7.4.2 Property Diagrams
7.4.3 The Carnot Cycle and Its Value in Engineering
7.4.4 Air-standard Assumptions
7.4.5 Rankine Cycle: The Ideal Cycle for Vapor Power Cycles
7.4.6 Energy Analysis of the Ideal Rankine Cycle
7.4.7 The Ideal Re-heat Rankine Cycle
7.4.8 The Ideal Regenerative Rankine Cycle
7.5 Second-Law Analysis of Vapor Power Cycles
7.5.1 Combined Gas-Vapor Power Cycles
7.5.2 Refrigeration Cycles
7.5.3 Refrigerators and Heat Pumps
7.5.4 The Reversed Carnot Cycle
7.6 Application of Thermodynamic Processes and Cycles in Aspen Plus
EXERCISES
REFERENCES
Chapter 8 Chemical Reaction Equilibrium
8.1 Motivational Example: Propylene from Propane
8.2 Chemical Reaction Stoichiometry
8.2.1 Extent of Reaction and Time-Independent Mole Balances
8.2.2 Extent of Reaction and Time-Dependent Material Balances
8.3 The Equilibrium Criterion Applied to a Chemical Reaction
8.3.1 The Equilibrium Constant
8.3.2 Accounting for the Effects of Pressure
8.3.3 Accounting for Changes in Temperature
8.3.4 Reference States and Nomenclature
8.4 Multiple Reaction Equilibrium
8.5 Summary
8.6 Chemical Reaction Equilibrium Simulation
EXERCISES
REFERENCES