幫助中心 | 我的帳號 | 關於我們

量子力學(從原子到原子核)(英文版)

  • 作者:(意)翁貝托·隆巴爾多//吉安盧卡·朱利亞尼//牛一斐
  • 出版社:科學
  • ISBN:9787030720344
  • 出版日期:2022/01/01
  • 裝幀:平裝
  • 頁數:278
人民幣:RMB 158 元      售價:
放入購物車
加入收藏夾

內容大鋼
    This textbook is addressed to graduate and post-graduate students in Physics.lt is intended to provide a self-contained introduction to the principles of Quantum Mechanics, based on the analysis of measurement processes of microscopic systems and the introduction of the physical observables as generators of symmetry transformations. After standard training arguments the applications are mainly focused on atomic and nuclear phenomena, as they occur on a quite different space-time scale. Thus, the text flows from the simplest systems, i.e. proton-electron in the Hydrogen atom and proton-neutron in the Deuteron nucleus, to the complex many-body systems, i.e. stable states of atoms and nuclei of the Periodic Table, and finally to infinite many-body systems, including atomic and nuclear fluids. A digression is made on the application to astrophysical compact systems.

作者介紹
(意)翁貝托·隆巴爾多//吉安盧卡·朱利亞尼//牛一斐

目錄
Chapter 1  Space-Time Symmetries and Classical Observables
  1.1  Hamilton's Equations
  1.2  Space-Time Symmetries and Conservation of Dynamical Variables
  1.3  Canonical Transformations and Space-Time Symmetries
  1.4  Notes and References
  1.5  Problems
Chapter 2  Superposition Principle
  2.1  An Historic Experiment
  2.2  Wave-like Behaviour of Particles
  2.3  Particle-like Behaviour of Waves
  2.4  The Stern-Gerlach Experiment
  2.5  Notes and References
  2.6  Problems
Chapter 3  States and Dynamical Variables
  3.1  States of a Quantum System as Vectors of Hilbert Space ..,
  3.2  Observables as Operators in Hilbert Space
  3.3  General Properties of Quantum Observables
  3.4  Unitary Transformations
  3.5  Notes and References
  3.6  Problems
Chapter 4  Space Translations and Momentum
  4.1  Wave Function and Position Operator
  4.2  Space Translations
  4.3  Momentum as a Generator of Infinitesimal Translations ...
  4.4  Free Particle in a Box
  4.5  Heisenberg Uncertainty Relations
  4.6  Notes and References
  4.7  Problems
Chapter 5  Elementary Phenomena
  5.1  Double-Slit Interference
  5.2  Diffraction Grating
  5.3  Double-Layer Reflection
  5.4  Scattering of Identical Particles
  5.5  Notes and References
  5.6  Problems
Chapter 6  Space Rotations and Angular Momentum
  6.1  Space Rotations
  6.2  Orbital Angular Momentum as Generator of Infinitesimal Rotations
  6.3  Properties of the Angular Momentum
  6.4  Orbital Angular Momentum in Polar Coordinates
  6.5  Reflection of Axes and Parity
  6.6  Spin
  6.7  The Rigid Rotor
      6.8  Complement to Sec.6.1  : Infinitesimal Space Rotations
  6.9  Notes and References
  6.10  Problems
Chapter 7  Time Translations and Hamiltonian
  7.1  Time Evolution Operator
  7.2  Equations of Motion
  7.3  Stationary SchrSdinger Equation

    7.3.1  SchrSdinger Equation for Potential Wells
    7.3.2  Attractive Well: Vo < 0
    7.3.3  Repulsive Well: V0 > 0
    7.3.4  Potential Barrier: 0 < E < V0
    7.3.5  Potential Barrier: E > V0 > 0
  7.4  Problems
Chapter 8  Harmonic Oscillations
  8.1  Quantum Harmonic Oscillator
    8.1.1  Eigenfunctions of the Harmonic Oscillator
  8.2  Vibrations of a Crystal Lattice
    8.2.1  Small Oscillations in Classical Approach
    8.2.2  Small Oscillations in Quantum Approach
  8.3  Three-Dimensional Harmonic Oscillator
  8.4  Notes and References
  8.5  Problems
Chapter 9  Approximations to Schr~idinger's Equation
  9.1  Perturbation Theory
    9.1.1  Non-Degenerate Case
    9.1.2  Degenerate Case
  9.2  Variational Approach
  9.3  Perturbation vs. Variational Approximations for 4He
    9.3.1  Perturbation Method
    9.3.2  Variational Estimate
  9.4  Problems
Chapter 10  Time-Dependent Equations of Motion
  10.1  Heisenberg Representation
  10.2  Two-Level Quantum System
    10.2.1  Unperturbed Hamiltonian
    10.2.2  Perturbation Potential
    10.2.3  Time-Dependent Hamiltonian
  10.3  Relationship between Symmetries and Conservation Theorems
  10.4  Classical Limit: Ehrenfest Theorem
  10.5  Particle Detection in Scattering Processes
  10.6  Problems
Chapter 11  Time-Dependent Perturbation Theory
  11.1  Interaction Representation
  11.2  Electron Transitions in Atoms
  11.3  Dipole Approximation
  11.4  Slow vs. Fast Processes
  11.5  Complement to Sec.11.2: Interaction of Charged Particles with the Electromagnetic Field
  11.6  Notes and References
  11.7  Problems
Chapter 12  Two-Body Problem: Bound States
  12.1  Central Potential
  12.2  Hydrogen Atom
  12.3  Isospin
  12.4  Ground State of the Deuteron
  12.5  Complement to Sec.12.4: Tensor Interaction
  12.6  Notes and References
  12.7  Problems

Chapter 13  Two-Body Problem: Scattering States
  13.1  Lippmann-Schwinger Equation
  13.2  Asymptotic Form of the Continuum States
  13.3  Solving the Lippmann-Schwinger Equation
  13.4  Elastic Scattering Cross Section
    13.4.1  Born Approximation for the Elastic Scattering Cross Section
    13.4.2  Nuclear and Coulomb Potential
    13.4.3  Electron Scattering and Nuclear Density
  13.5  Partial-Wave Analysis
  13.6  Low-Energy Scattering and Bound States
  13.7  Nuclear Interaction from Nucleon-Nucleon Scattering
  13.8  Notes and References
  13.9  Problems
Chapter 14  Many-Body Systems
  14.1  Systems of Identical Particles
  14.2  The Hartree-Fock Approximation
  14.3  Atomic Structure
  14.4  Nuclear Structure
    14.4.1  The Nuclear Shell Model
    14.4.2  Liquid Drop Model and Nuclear Matter
    14.4.3  Microscopic Approaches
  14.5  Complement to Sec.14.2: Second Quantization
  14.6  Complement to Sec.14.4.1: Isotropic 3-Dimensional Harmonic Oscillator
  14.7  Notes and References
  14.8  Problems
Chapter 15  The Dirac Equation
  15.1  The Klein-Gordon Equation
  15.2  Dirac's Equation
    15.2.1  Diagonalization of the Hamiltonian
    15.2.2  The Spin Variable
  15.3  Covariant Form of the Dirac Equation
  15.4  The Spin-Orbit Interaction
  15.5  Complement to Sec.15.4: Semi-Classical Hamiltonian
  15.6  Notes and References
  15.7  Problems
Chapter 16  Homogeneous Many-Body Systems
  16.1  Gibbs Statistical Approach
  16.2  Time Average and Statistical Average
  16.3  Microcanonical Ensemble
  16.4  Connection with Thermodynamics
  16.5  Grand Canonical Ensemble
  16.6  Finite-Temperature Ideal Fermi Gas
  16.7  Fermi Systems in Astrophysics
    16.7.1  Degenerate Electron Gas in White Dwarf Stars
    16.7.2  Neutron Stars
  16.8  Finite-Temperature Ideal Bose Gas: Black Body Radiation
    16.8.1  Spectral Decomposition of the Electromagnetic Field
    16.8.2  Quantization of the Electromagnetic Field: Photon
    16.8.3  Black-Body Radiation from the Classical Point of View
  16.9  Complement to Sec.16.5  : Grand Canonical Probability

  16.10  Complement to Sec.16.7  : Newtonian Hydrostatic Equilibrium
  16.11  Notes and References
  16.12  Problems
Chapter 17  Semi-Classical Limit
  17.1  Wigner and Weyl Transforms
  17.2  Ehrenfest Theorem Revisited
  17.3  Semiclassical Limit of the HF Approximation
  17.5  Notes and References
  17.6  Problems
Chapter 18  Collective Modes in Atomic and Nuclear Systems
  18.1  Collective Modes in Fermi Systems
    18.1.1  Quantum First Sound
    18.1.2  Zero Sound
    18.1.3  Nuclear Collective Modes
  18.2  Notes and References
  18.3  Problems
Appendix A  Vectors and Operators
  A.1  Multidimensional Vector Spaces
  A.2  Hilbert Space
  A.3  Operators
    A.3.1  Properties of Operators
    A.3.2  Projection Operators
  A.4  Eigenwlue Problem
  A.5  Representation of Vectors and Operators
    A.5.1  Matrix Representation
    A.5.2  Matrix Representation of Vectors and Operators
    A.5.3  Eigenvalue Problem in Matrix Form
  A.6  Continuous Spectrum and Dirac b-function
Appendix B  Special Functions in Quantum Mechanics.-.
  B.1  Orbital Angular Momentum in Polar Coordinates
  B.2  Spherical Harmonics and Legendre Polynomials
  B.3  Spherical Bessel Functions
  B.4  Hermite Polynomials
  B.5  Laguerre Polynomials
Appendix C  Coupling of Angular Momenta
  C.1  Clebsch-Gordan Coefficients
  C.2  Tensor Operators: Wigner-Eckart Theorem
  C.3  Projection Theorem
Appendix D  Mathematical Complements
  D.1  Fourier Transform and Convolution Theorem
  D.2  The Green Function Formalism
  D.3  The Residue Theorem
Physical Constants
Units of Measurement
Bibliography
Subject Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032