幫助中心 | 我的帳號 | 關於我們

常微分方程--解析方法與數值方法

  • 作者:編者:許秋燕//劉智永|責編:牛曉麗
  • 出版社:電子工業
  • ISBN:9787121435430
  • 出版日期:2022/06/01
  • 裝幀:平裝
  • 頁數:225
人民幣:RMB 69 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書主要介紹常微分方程的一些常用解析方法和數值方法,對於一階常微分方程,介紹了4種常用的解析方法,即變數分離法、常數變易法、積分因子法、參數表示法;對於高階常微分方程,重點討論了特徵根法、比較係數法、拉普拉斯變換法、降階法和冪級數法;對於線性常微分方程組,介紹了其一般理論及基解矩陣的計算等。此外,本書還介紹了常微分方程初值問題和邊值問題的數值求解方法,這些數值方法不僅包括經典的歐拉方法、Runge-Kutta方法、有限差分方法、有限元方法等,還涉及近年來數值計算中流行的配點方法。解析方法與數值方法並駕齊驅,相互促進,是求解常微分方程的兩種重要手段。本書以各類方法為切入點,通過引入大量的經典常微分方程模型,深入淺出地闡述了各種模型問題的求解。本書可供數學專業高年級本科生或研究生閱讀,也可作為從事數學建模、數學實驗、科學工程計算等方面工作的理工類專業人員的參考書。

作者介紹
編者:許秋燕//劉智永|責編:牛曉麗

目錄
第1章  常微分方程模型
  1.1  經典常微分方程模型
  1.2  常微分方程基本概念
    1.2.1  基本概念
    1.2.2  幾何意義
  1.3  常微分方程發展歷史
  習題1
第2章  一階常微分方程的解析方法
  2.1  變數分離法
    2.1.1  變數分離方程
    2.1.2  可化為變數分離方程的類型
  2.2  常數變易法
  2.3  積分因子法
    2.3.1  恰當微分方程
    2.3.2  積分因子法
  2.4  參數表示法
    2.4.1  可以解出y(或x)的方程
    2.4.2  不顯含y或x的方程
  2.5  應用舉例
  習題2
第3章  一階常微分方程的解的存在理論
  3.1  解的存在唯一性定理
  3.2  解的延拓定理
  3.3  解對初值的連續性定理
  3.4  解對初值的可微性定理
  3.5  包絡和奇解
  習題3
第4章  高階常微分方程的解析方法
  4.1  高階線性微分方程的一般理論
    4.1.1  線性微分方程模型
    4.1.2  齊次線性微分方程
    4.1.3  非齊次線性微分方程
  4.2  特徵根法
    4.2.1  復值函數與復指數函數
    4.2.2  常係數齊次線性微分方程
    4.2.3  歐拉方程
  4.3  比較係數法
  4.4  拉普拉斯變換法
  4.5  降階法
  4.6  冪級數法
  4.7  應用問題舉例
  習題4
第5章  線性常微分方程組的解析方法
  5.1  線性微分方程組的一般理論
    5.1.1  基本概念
    5.1.2  存在唯一性定理
    5.1.3  齊次線性微分方程組
    5.1.4  非齊次線性微分方程組
  5.2  常係數線性微分方程組
    5.2.1  矩陣指數expA

    5.2.2  基解矩陣的計算
  5.3  應用問題舉例
  習題5
第6章  常微分方程初值問題的數值解
  6.1  歐拉方法
    6.1.1  歐拉方法及其改進
    6.1.2  歐拉方法分析
  6.2  Runge-Kutta方法
  6.3  線性多步方法
  6.4  應用舉例
  習題6
第7章  常微分方程邊值問題的數值解
  7.1  有限差分方法
  7.2  有限元方法
  7.3  配點方法
  7.4  打靶法
  7.5  應用舉例
  習題7
參考文獻

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032