幫助中心 | 我的帳號 | 關於我們

智慧地鐵車站系統--數據科學與工程(英文版)(精)

  • 作者:劉輝|責編:劉穎維
  • 出版社:中南大學
  • ISBN:9787548747864
  • 出版日期:2022/03/01
  • 裝幀:精裝
  • 頁數:272
人民幣:RMB 168 元      售價:
放入購物車
加入收藏夾

內容大鋼
    智慧地鐵專註于鐵路系統的新概念和新模式,是數據科學與工程的跨學科研究。智慧地鐵是一個新興的領域。本書介紹智慧地鐵車站系統中數據科學和工程學的關鍵技術。本書可以為研究人員提供重要參考,並鼓勵以後在智慧地鐵、智能鐵路、數據科學與工程、人工智慧和其他相關領域進行後續研究。

作者介紹
劉輝|責編:劉穎維

目錄
Chapter 1  Exordium
  1.1  Overview of data science and engineering
  1.2  Framework of smart metro station systems
  1.3  Human and smart metro station systems
  1.4  Environment and smart metro station systems
  1.5  Energy and smart metro station systems
  1.6  Scope of this book
  References
Chapter 2  Metro traffic flow monitoring and passenger guidance
  2.1  Introduction
  2.2  Description of metro traffic flow data
  2.3  Prediction of metro traffic flow based on Elman neural network
  2.4  Prediction of metro traffic flow based on deep echo state network
  2.5  Passenger guidance strategy based on prediction results
  2.6  Conclusions
  References
Chapter 3  Individual behavior analysis and trajectory prediction
  3.1  Introduction
  3.2  Description of individual GPS data
  3.3  Preprocessing of individual GPS data
  3.4  Prediction of GPS trajectory based on optimized extreme learning machine
  3.5  Prediction of GPS trajectory based on optimized support vector machine
  3.6  Analysis of individual behavior based on prediction results
  3.7  Conclusions
  References
Chapter 4  Clustering and anomaly detection of crowd hotspot regions
  4.1  Introduction
  4.2  Description of crowd GPS data
  4.3  Preprocessing of crowd GPS data
  4.4  Clustering of crowd hotspot regions based on K-means
  4.5  Clustering of crowd hotspot regions based on DBSCAN
  4.6  Anomaly detection of crowd hotspot regions based on Markov chain
  4.7  Conclusions
  References
Chapter 5  Monitoring and deterministic prediction of station humidity
  5.1  Introduction
  5.2  Description of station humidity data
  5.3  Deterministic prediction of station humidity based on optimization ensemble
  5.4  Deterministic prediction of station humidity based on stacking ensemble
  5.5  Evaluation of deterministic prediction results
  5.6  Conclusions
  References
Chapter 6  Monitoring and probabilistic prediction of station temperature
  6.1  Introduction
  6.2  Description of station temperature data
  6.3  Interval prediction of station temperature based on quantile regression
  6.4  Interval prediction of station temperature based on kernel density estimation
  6.5  Evaluation of probabilistic prediction results
  6.6  Conclusions
  References

Chapter 7  Monitoring and spatial prediction of multi-dimensional air pollutants
  7.1  Introduction
  7.2  Description of multi-dimensional air pollutants data
  7.3  Dimensionality reduction of multi-dimensional air pollutants data
  7.4  Spatial prediction of air pollutants based on Long Short-Term Memory
  7.5  Evaluation of spatial prediction results
  7.6  Conclusions
  References
Chapter 8  Time series feature extraction and analysis of metro load
  8.1  Introduction
  8.2  Description of metro load data
  8.3  Feature extraction of metro load based on statistical methods
  8.4  Feature extraction of metro load based on transform methods
  8.5  Feature extraction of metro load based on model
  8.6  Conclusions
  References
Chapter 9  Characteristic and correlation analysis of metro load
  9.1  Introduction
  9.2  The theoretical basis of correlation analysis
  9.3  Description of metro load data
  9.4  Correlation analysis of metro load and environment data
  9.5  Correlation analysis of metro load and operation data
  9.6  Comprehensive correlation ranking of metro load and related data
  9.7  Conclusions
  References
Chapter 10  Metro load prediction and intelligent ventilation control
  10.1  Introduction
  10.2  Description of short-term and long-term metro load data
  10.3  Short-term prediction of metro load data based on ANFIS model
  10.4  Long-term prediction of metro load data based on SARIMA model
  10.5  Performance evaluation of prediction results
  10.6  Intelligent ventilation control based on prediction results
  10.7  Conclusions
  References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032