氣動聲學基礎及其在航空推進系統中的應用(英文版國際版)(精)/大飛機出版工程
內容大鋼
氣動聲學既是一門流體與聲學交叉的基礎技術學科,又是一門緊密結合航空飛行器及其推進系統研發設計的應用學科,有著顯著的工程應用背景。因此,如何將複雜的飛行動力系統中聲音的產生、傳播和輻射凝練成基礎科學問題,並從中獲得物理機制的理解和認識,是本書主要的寫作目的。本書按照氣動聲學作為基礎學科的發展過程為背景,結合航空推進器關鍵氣動聲學問題,構建了從基礎研究到工程應用快速預測方法的知識體系,其中包括氣動聲學的基本定律、快速計算模型、不同類型的流體與物面邊界干涉等發聲問題的物理建模、並結合發動機主要雜訊部件闡明了聲音的來源和傳播特性。
本書可以作為氣動聲學課程講義,也可以作為具有基礎流體力學和聲學基礎知識的研究生自學材料,更可以成為參與型號研製的航空工程師學習調研的重要參考資料。
作者介紹
孫曉峰//王曉宇|責編:江璇//劉宇軒|總主編:顧誦芬
目錄
CHAPTER 1 Basic equations of aeroacoustics
1.1 Sound sources in moving media
1.1.1 Basic equations o f sound propagation
1.1.2 Energy relations in moving media
1.1.3 Sound field ofmoving sound sources
1.1.4 Frequency features of moving sound sourcc Dopplcr effect
1.2 Generalized Green』s formula
1.3 Lighthill equation
1.3.1 Derivation of basic equations
1.3.2 Effect of solid boundary on sound generation
1.4 Ffowcs Williams.Hawkings equation
1.5 Generalized Lighthill』s equation
References
CHAPTER 2 Propeller noise:Prediction and control
2.1 Noise sources of propeller
2.1.1 An overvicw,the developing history of propeller noise
prediction
2.1.2 Advanced propeller noise(Propfan noisc)
2.2 Propeller noise prediction in frequency—domain
2.2.1 The basic equations
2.2.2 Aerodynamic performance prediction
2.2.3 The near-field solution of propeller noise
2.2.4 The far-field solution of propeller noise
2.3 Propeller noise prediction in time—domain
2.3.1 The basic equations
2.3.2 The solution o f the free-space generalized wave equation
2.3.3 The fundamental integral formulas o f the sur face source in time-domain
2.3.4 The integral expressions of the sound field due to
monopoles and dipoles
2.3.5 Introduction to numerical computation methods
References
CHAPTER 3 Noise prediction in aeroengine
3.1 Noise sources in aeroengine
3.2 Tone noise by rotor/stator interaction in fan compressor
3.2.1 Introduction
3.2.2 Model of sound generation by unstcady aerodynamic load on blade
3.2.3 Prediction for tone noise by rotor/stator interaction
3.3 Shockwave noise in fan/compressor
3.3.1 Physical mechanism of shockwave noise in fan
compressor
3.3.2 Shockwave noise prediction method
3.3.3 Power computation of shockwave noise
3.4 Combustion noise
3.5 Jet noise
3.5.1 Solution of Lighthill』S equation
3.5.2 Prediction ofjet noise
3.5.3 Effect of non-uniform flow Lilley』s equation
References
CHAPTER 4 Linearized unsteady aerodynamics for aeroacoustic applications
4.1 IntrOductiOn
4.2 Basic linearized unsteady aerodynamic equations
4.2.1 Velocity decomposing theorem for uniform flows
4.2.2 Disturbance velocity decomposition in non-uni form flow
fields:Goldstein』S equation
4.3 Unsteady loading for two—dimensional supersonic cascades with
subsonic leading—edge locus
4.3.1 Physical and mathematical models
4.3.2 Discussion concerning the convergence of thc kernel
function
4.3.3 Reflection coefficients of Mach waves and the solution of
the integral equation
4.3.4 Comparison o f numerical solutions for unsteady blade
loading
4.4 Lifting surface theory for unsteady analysis of fan/compressor
cascade
4.4.1 A unifled framework for acoustic field and unsteady flow
4.4.2 Integral equation for the solution of unsteady blade load
4.4.3 Upwash velocity for three di fferent incoming conditions
4.4.4 Solution to the integral equation
4.4.5 Numerical validation of unsteady blade loading
References
CHAPTER 5 Vortex sound theory
5.1 Introduction tO sound generation induced by vortex flow
5.2 Basic equations of vortex sound
5.2.1 Powell』S equation
5.2.2 Howe』S acoustic analogy
5.2.3 The equivalence of Curie』s equation and Howe』s equation
5.3 Vortex sound model of trailing edge noise
5.4 Vortex sound model of liner impedance
5.5 Effect of grazing flow on vortex-sound interaction of
perforated plates
5.5.1 Effect of grazing flow on the acoustic impedance of
perforated plates
5.5.2 Effect of plate thickness on impedance of perforated
plates with bias flow
5.6 Nonlinear model of vortex.sound interaction
5.6.1 The nonlinear model of vortex sound intcraction
occurring at a slit
5.6.2 Flow-excited acoustic resonance of a Helmholtz resonator
References
CHAPTER 6 Sound generation.propagation.and radiation infrom an
aeroengine nacelle
6.1 IntroductiOn
6.2 Basic theory of sound propagation in ducts
6.3 Computational approaches for duct acoustics
6.3.1 Sound propagation in an aeroengine nacelle
6.3.2 Fundamental idea of the trans.fer element method
6.3.3 Construction of transfer element for a locally reacting
lined duct
6.3.4 Construction of transfer element for a nonlocally reacting
lined duct
6.3.5 Construction of transfer element for a varying cross
section duct
6.3.6 ralrlalation of the combjned acoustjC Lner
6.4 Fan noise source modeling
6.4.1 Tonal/broadband interaction noise prediction
6.4.2 The passive control effect of vane sweep and lean
6.4.3 Sound SOUrCe prediction model for a finite region
6.5 Interaction effect
6.5.1 The interaction between rotor and Stator cascades
6.5.2 The interaction between source and liner
6.5.3 Far-field sound radiation of an aeroenginc nacelle
References
CHAPTER 7 Thermoacoustic instability
7.1 Basic concepts of thermoacoustics
7.2 One—dimensional calculation method
7.3 Three.dimensional linear analysis method for combustion
instability
7.3.1 Analytical approach
7.3.2 Numerical calculation method
7.3.3 Effect of vorticity waves on azimuthal instabilities in
annular chambers
7.4 Control of thermoacoustic instability in a Rijke tube
7.4.1 Perforated liner with bias flow
7.4.2 Drum-like silencer
Appendix
References
CHAPTER 8 Impedance eduction for acoustic liners
8.1 Introduction
8.2 Straight forward method of acoustic impedance eduction
8.2.1 Model description
8.2.2 Sound field in thc flow duct
8.2.3 Mode decomposition by using Prony』s method
8.2.4 Impedance eduction
8.2.5 Model validation
8.3 Shear flow effect on the impedance eduction
8.3.1 Model description
8.3.2 Sound field in the flow duct
8.3.3 Mode decomposition
8.3.4 I