幫助中心 | 我的帳號 | 關於我們

複分析(第4版影印版)

  • 作者:(美)S.朗|責編:高蓉//李黎
  • 出版社:世界圖書出版公司
  • ISBN:9787506260060
  • 出版日期:2003/12/01
  • 裝幀:平裝
  • 頁數:485
人民幣:RMB 119 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書共十六章,書中全面論述了複分析的基本理論和許多論題,如黎曼映射定理、γ函數、解析開拓。本書前半部分內容適用於數學系本科生複分析一學期課程。後半部分適用於研究生專題課程。與第2版相比,本版內容做了較大改動,頁數增加了120頁。

作者介紹
(美)S.朗|責編:高蓉//李黎

目錄
Foreword
Prerequisites
PART ONE  Basic Theory
  CHAPTER Ⅰ  Complex Numbers and Functions
    1.Definition
    2.Polar Form
    3.Complex Valued Functions
    4.Limits and Compact Sets Compact Sets
    5.Complex Differentiability
    6.The Cauchy-Riemann Equations
    7.Angles Under Holomorphic Maps
  CHAPTER Ⅱ  Power Series
    1.Formal Power Series
    2.Convergent Power Series
    3.Relations Between Formal and Convergent Series
      Sums and Products
      Quotients
      Composition of Series
    4.Analytic Functions
    5.Differentiation of Power Series
    6.The Invelse and Open Mapping Theorems
    7.The Local Maximum Modulus Principle
  CHAPTER Ⅲ  Cauchy's Theorem, First Part
    1.Holomorphic Functions on Connected Sets  Appendix: Connectedness
    2.Integrals Oer Paths
    3.Local Primitive for a Holomorphic Function
    4.Ancther Description of 1he Integral Along a Path
    5.The Homotopy Form of Cauchy's Theorem
    6.Existence of Global Primitives.Definition of the Logarithm
    7.The Local Cauchy Formula
  CHAPTER Ⅳ  Winding Numbers and Cauchy's Theorem
    1.The Winding Number
    2.The Global Catchy Theorem Dixon's PIocf of Theorem 2.5 (Cauchy's Formula)
    3.Artin's Proof
  CHAPTER Ⅴ  Applications 1 Cauchy's Integral Formula
    1.Uniform Limits of Analytic Functions
    2.Lament Series
    3.Isolated Singularities
      Removable Singularities
      Poles
      E sential Singularities
  CHAPTER Ⅵ  Calculus ot Residues
    1.The Residue Formula
      Residues of Differentials
    2.Evaluation of Definite Integrals
      Fourier Transforms
      Trigonometric Integrals
      Mellin Transforms
  CHAPTER Ⅶ  Conlormsl Mappings
    1.Schwarz Lemma

    2.Analytic Automorphisms of the Dic
    3.The Upper Half Plane
    4.Olher Examples
    5.Fractional Linear Transformations
  CHAPTER Ⅷ  Harmonic Functions
    1.Definition
      Application: Perpendicularity
      Application: Flow Lines
    2.Examples
    3.Basic Properties of Harmonic Functions
    4.The Poisson Formula
      The Poisson Integral as a Convolution
    5.Construction of Harmonic Furctions
    6.Appendix. Differentiating Under the Integral Sign
PART TWO  Geometric Function Theory
  CHAPTER Ⅸ  Schwarz Reflection
    1.Schwarz Reflection (by Complex Conjugation)
    2.Reflection Across Analytic Arcs
    3.Application cf Schwatz Reflection
  CHAPTER Ⅹ  The Riemann Mapping Theorem
    1.Statement of the Theorem
    2.Compact Sets in Function Spces
    3.Proof cf the Riemann Mapping Theorem
    4.Behavior at the Boundary
  CHAPTER ?  Analytic Continuation Along Curves
    1.Continuation Along a Curve
    2.The Dilogarithm  
    3.Application lo Picard's Theorem
PART THREE  Various Analytic Topics
  CHAPTER ?  Applications of the Maximum Modulus Principle and Jensen's Formula
    1.Jensen's Formula
    2.The Picard-Borel Theorem
    3.Bounds by the Real Part, Borel-Carathrodory Theorem
    4.The Use cf Three Circles and the Effect of Small Derivatives
      Hermite Interpolation Formula
    5.Entire Functions with Rational Valves
    6.The Phragmen-Lindelrf and Hadamard Theorems
  CHAPTER ⅩⅢ  Entire and Meromorphic Functions
    1.Infinite Products
    2.Weierstrass Products
    3.Functions of Finite Order
    4.Meromorphic Functions, Mittag-Leffler Theorem
  CHAPTER XIV  Elliptic Functions
    1.The Liouville Theorems
    2.The Weierstrass Function
    3.The Addition Theorem
    4.The Sigma and Zeta Functions
  CHAPTER ⅩⅤ  The Gamma and Zeta Functions
    1.The Differentiation Lemma
    2.The Gamma Function

      Weierstrass Product
      The Gauss Multiplication Formula (Distribution Relation)
      The (Other) Gauss Formula
      The Mellin Transform
      The Starling Formula
      Proof of Starling's Formula
    3.The Lerch Formula
    4.Zeta Functions
  CHAPTER ⅩⅥ  The Prime Number Theorem
    1.Basic Analytic Properties of the Zeta Function
    2.The Main Lemma and its Application
    3.Proof of the Main Lemma
Appenflix
  1.Summation by Parts and Non-Absolute Convergence
  2.Difference Equations
  3.Analytic Differential Equations
  4.Fixed Points of a Fractional Linear Transformation
  5.Cauchy's Formula for C Functions
  6.Cauchy's Theorem for Locally Integrable Vector Fields
Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032