幫助中心 | 我的帳號 | 關於我們

數學物理的幾何方法(英文版)

  • 作者:(英)舒茨|責編:高蓉//李黎
  • 出版社:世界圖書出版公司
  • ISBN:9787510004513
  • 出版日期:2009/06/01
  • 裝幀:平裝
  • 頁數:250
人民幣:RMB 58 元      售價:
放入購物車
加入收藏夾

內容大鋼
    現代微分幾何在理論物理中扮演著重要的角色,並且在相對論、宇宙學、高能量物理和場論、熱動力學、流體力學以及力學中的應用也日益突顯。
    本書作為一本微分幾何教程,介紹了李導數、李群以及微分形式的引入方法,及其在理論物理中的廣泛應用。
    有物理和應用數學背景的讀者學完本書,就可以更深入學習一些科研文獻以及更高層次的純數學理論。

作者介紹
(英)舒茨|責編:高蓉//李黎

目錄
Preface
1  Some basic mathematics
  1.1  The space Rn and its topology
  1.2  Mappings
  1.3  Real analysis
  1.4  Group theory
  1.5  Linear algebra
  1.6  The algebra of square matrices
  1.7  Bibliography
2  Dffferentiable manifolds and tensors
  2.1  Defmition of a manifold
  2.2  The sphere as a manifold
  2.3  Other examples of manifolds
  2.4  Global considerations
  2.5  Curves
  2.6  Functions on M
  2.7  Vectors and vector fields
  2.8  Basis vectors and basis vector fields
  2.9  Fiber bundles
  2.10  Examples of fiber bundles
  2.11  A deeper look at fiber bundles
  2.12  Vector fields and integral curves
  2.13  Exponentiation of the operator d/dZ
  2.14  Lie brackets and noncoordinate bases
  2.15  When is a basis a coordinate basis?
  2.16  One-forms
  2.17  Examples of one-forms
  2.18  The Dirac delta function
  2.19  The gradient and the pictorial representation of a one-form
  2.20  Basis one-forms and components of one-forms
  2.21  Index notation
  2.22  Tensors and tensor fields
  2.23  Examples of tensors
  2.24  Components of tensors and the outer product
  2.25  Contraction
  2.26  Basis transformations
  2.27  Tensor operations on components
  2.28  Functions and scalars
  2.29  The metric tensor on a vector space
  2.30  The metric tensor field on a manifold
  2.31  Special relativity
  2.32  Bibliography
3  Lie derivatives and Lie groups
  3.1  Introduction: how a vector field maps a manifold into itself
  3.2  Lie dragging a function
  3.3  Lie dragging a vector field
  3.4  Lie derivatives
  3.5  Lie derivative of a one-form
  3.6  Submanifolds
  3.7  Frobenius theorem (vector field version)

  3.8  Proof of Frobenius theorem
  3.9  An example: the generators ors2
  3.10  Invariance
  3.11  Killing vector fields
  3.12  Killing vectors and conserved quantities in particle dynamics
  3.13  Axial symmetry
  3.14  Abstract Lie groups
  3.15  Examples of Lie groups
  3.16  Lie algebras and their groups
  3.17  Realizations and representatidns
  3.18  Spherical symmetry, spherical harmonics and representations of the rotation group
  3.19  Bibliography
4  Differential forms A The algebra and integral calculus of forms
  4.1  Definition of volume - the geometrical role of differential forms
  4.2  Notation and definitions for antisymmetric tensors
  4.3  Differential forms
  4.4  Manipulating differential forms
  4.5  Restriction of forms
  4.6  Fields of forms
  4.7  Handedness and orientability
  4.8  Volumes and integration on oriented manifolds
  4.9  N-vectors, duals, and the symbol
  4.10  Tensor densities
  4.11  Generalized Kronecker deltas
  4.12  Determinants and
  4.13  Metric volume elements B The differential calculus of forms and its applications
  4.14  The exterior derivative
  4.15  Notation for derivatives
  4.16  Familiar examples of exterior differentiation
  4.17  Integrability conditions for partial differential equations
  4.18  Exact forms
  4.19  Proof of the local exactness of closed forms
  4.20  Lie derivatives of forms
  4.21  Lie derivatives and exterior derivatives commute
  4.22  Stokes theorem
  4.23  Gauss theorem and the definition of divergence
  4.24  A glance at cohomology theory
  4.25  Differential forms and differential equations
  4.26  Frobenins theorem (differential forms version)
  4.27  Proof of the equivalence of the two versions of Frobenius theorem
  4.28  Conservation laws
  4.29  Vector spherical harmonics
  4.30  Bibliography
5  Applications in physics A Thermodynamics
  5.1  Simple systems
  5.2  Maxwell and other mathematical identities
  5.3  Composite thermodynamic systems: Caratheodorys theorem B Hamilton/an mechanics
  5.4  Hamiltodian vector fields
  5.5  Canonical transformations
  5.6  Map between vectors and one-forms provided by

  5.7  Poisson bracket
  5.8  Many-particle systems: symplectic forms
  5.9  Linear dynamical systems: the symplectic inner product and conserved quantities
  5.10  Fiber bundle structure of the Hamiltonian equations C Electromagnetism
  5.11  Rewriting Maxwells equations using differential forms
  5.12  Charge and topology
  5.13  The vector potential
  5.14  Plane waves: a simple example D Dynamics of a perfect fluid
  5.15  Role of Lie derivatives
  5.16  The comoving time-derivative
  5.17  Equation of motion
  5.18  Conservation of vorticity
    E Cosmology
  5.19  The cosmological principle
  5.20  Lie algebra of maximal symmetry
  5.21  The metric of a spherically symmetric three-space
  5.22  Construction of the six Killing vectors
  5.23  Open, closed, and flat universes
  5.24  Bibliography
6  Connections for Riemnnnian manifolds and gauge theories
  6.1  Introduction
  6.2  Parallelism on curved surfaces
  6.3  The covariant derivative
  6.4  Components: covariant derivatives of the basis
  6.5  Torsion
  6.6  Geodesics
  6.7  Normal coordinates
  6.8  Riemann tensor
  6.9  Geometric interpretation of the Riemann tensor
  6.10  Flat spaces
  6.11  Compatibility of the connection with volume-measure or the metric
  6.12  Metric connections
  6.13  The affine connection and the equivalence principle
  6.14  Connections and gauge theories: the example of electromagnetism
  6.15  Bibfiography
Appendix:solutions and hints for selected exercises
Notation
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032