幫助中心 | 我的帳號 | 關於我們

計算流體動力學導論--有限體積法(第2版)(英文版)

  • 作者:(美)H.K.Versteeg//W.Malalasekera|責編:高蓉//李黎
  • 出版社:世界圖書出版公司
  • ISBN:9787510005572
  • 出版日期:2010/05/01
  • 裝幀:平裝
  • 頁數:503
人民幣:RMB 129 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是一本非常實用的計算流體動力學教材,它以簡明、清晰的語言介紹了計算流體動力學的基本原理、控制方程、邊界條件、湍流及其模式、有限體積法等。與上一版相比,在保持第一版基本結構和寫作風格基礎上,本書增加了一部分內容介紹CFD重要發展;在處理流體流方面,本書增加了支持LES和DNS的基本觀點的綜述,使得內容結構更加完整。本書還重點介紹了目前在各類流行商業軟體中普遍採用的基於壓力求解體系的有限體積法。

作者介紹
(美)H.K.Versteeg//W.Malalasekera|責編:高蓉//李黎

目錄
Preface
Acknowledgements
1  Introduction
  1.1  What is CFD?
  1.2  How does a CFD code work?
  1.3  Problem solving with CFD
  1.4  Scope of this book
2  Conservation laws of fluid motion and boundary conditions
  2.1  Governing equations of fluid flow and heat transfer
    2.1.1  Mass conservation in three dimensions
    2.1.2  Rates of change following a fluid particle and for a fluid element
    2.1.3  Momentum equation in three dimensions
    2.1.4  Energy equation in three dimensions
  2.2  Equations of state
  2.3  Navier-Stokes equations for a Newtonian fluid
  2.4  Conservative form of the governing equations of fluid flow
  2.5  Differential and integral forms of the general transport equations
  2.6  Classification of physical behaviours
  2.7  The role of characteristics in hyperbolic equations
  2.8  Classification method for simple PDEs
  2.9  Classification of fluid flow equations
  2.10  Auxiliary conditions for viscous fluid flow equations
  2.11  Problems in transonic and supersonic compressible flows
  2.12  Summary
3  Turbulence and its modelling
  3.1  What is turbulence?
  3.2  Transition from laminar to turbulent flow
  3.3  Descriptors of turbulent flow
  3.4  Characteristics of simple turbulent flows
    3.4.1  Free turbulent flows
    3.4.2  Flat plate boundary layer and pipe flow
    3.4.3  Summary
  3.5  The effect of turbulent fluctuations on properties of the mean flow
  3.6  Turbulent flow calculations
  3.7  Reynolds-averaged Navier-Stokes equations and classical turbulence models
    3.7.1  Mixing length model
    3.7.2  The k-ε model
    3.7.3  Reynolds stress equation models
    3.7.4  Advanced turbulence models
    3.7.5  Closing remarks-RANS turbulence models
  3.8  Large eddy simulation
    3.8.1  Spacial filtering of unsteady Navier-Stokes equations
    3.8.2  Smagorinksy-Lilly SGS model
    3.8.3  Higher-order SGS models
    3.8.4  Advanced SGS models
    3.8.5  Initial and boundary conditions for LES
    3.8.6  LES applications in flows with complex geometry
    3.8.7  General comments on performance of LES
  3.9  Direct numerical simulation
    3.9.1  Numerical issues in DNS

    3.9.2  Some achievements of DNS
  3.10  Summary
4  The finite volume method for diffusion problems
  4.1  Introduction
  4.2  Finite volume method for one-dimensional steady state diffusion
  4.3  Worked examples: one-dimensional steady state diffusion
  4.4  Finite volume method for two-dimensional diffusion problems
  4.5  Finite volume method for three-dimensional diffusion problems
  4.6  Summary
5  The finite volume method for convection-diffusion problems
  5.1  Introduction
  5.2  Steady one-dimensional convection and diffusion
  5.3  The central differencing scheme
  5.4  Properties of discretisation schemes
    5.4.1  Conservativeness
    5.4.2  Boundedness
    5.4.3  Transportiveness
  5.5  Assessment of the central differencing scheme for convection-diffusion problems
  5.6  The upwind differencing scheme
    5.6.1  Assessment of the upwind differencing scheme
  5.7  The hybrid differencing scheme
    5.7.1  Assessment of the hybrid differencing scheme
    5.7.2  Hybrid differencing scheme for multi-dimensional convection-diffusion
  5.8  The power-law scheme
  5.9  Higher-order differencing schemes for convection-diffusion problems
    5.9.1  Quadratic upwind differencing scheme: the QUICK scheme
    5.9.2  Assessment of the QUICK scheme
    5.9.3  Stability problems of the QUICK scheme and remedies
    5.9.4  General comments on the QUICK differencing scheme
  5.10  TVD schemes
    5.10.1  Generalisation of upwind-biased discretisation schemes
    5.10.2  Total variation and TVD schemes
    5.10.3  Criteria for TVD schemes
    5.10.4  Flux limiter functions
    5.10.5  Implementation of TVD schemes
    5.10.6  Evaluation of TVD schemes
  5.11  Summary
6  Solution algorithms for pressure-velocity coupling in steady flows
  6.1  Introduction
  6.2  The staggered grid
  6.3  The momentum equations
  6.4  The SIMPLE algorithm
  6.5  Assembly of a complete method
  6.6  The SIMPLER algorithm
  6.7  The SIMPLEC algorithm
  6.8  The PISO algorithm
  6.9  General comments on SIMPLE, SIMPLER, SIMPLEC and PISO
  6.10  Worked examples of the SIMPLE algorithm
  6.11  Summary
7  Solution of discretised equations

  7.1  Introduction
  7.2  The TDMA
  7.3  Application of the TDMA to two-dimensional problems
  7.4  Application of the TDMA to three-dimensional problems
  7.5  Examples
    7.5.1  Closing remarks
  7.6  Point-iterative methods
    7.6.1  Jacobi iteration method
    7.6.2  Gauss-Seidel iteration method
    7.6.3  Relaxation methods
  7.7  Multigrid techniques
    7.7.1  An outline of a multigrid procedure
    7.7.2  An illustrative example
    7.7.3  Multigrid cycles
    7.7.4  Grid generation for the multigrid method
  7.8  Summary
8  The finite volume method for unsteady flows
  8.1  Introduction
  8.2  One-dimensional unsteady heat conduction
    8.2.1  Explicit scheme
    8.2.2  Crank-Nicolson scheme
    8.2.3  The fully implicit scheme
  8.3  Illustrative examples
  8.4  Implicit method for two-and three-dimensional problems
  8.5  Discretisation of transient convection-diffusion equation
  8.6  Worked example of transient convection-diffusion using QUICK differencing
  8.7  Solution procedures for unsteady flow calculations
    8.7.1  Transient SIMPLE
    8.7.2  The transient PISO algorithm
  8.8  Steady state calculations using the pseudo-transient approach
  8.9  A brief note on other transient schemes
  8.10  Summary
9  Implementation of boundary conditions
  9.1  Introduction
  9.2  Inlet boundary conditions
  9.3  Outlet boundary conditions
  9.4  Wall boundary conditions
  9.5  The constant pressure boundary condition
  9.6  Symmetry boundary condition
  9.7  Periodic or cyclic boundary condition
  9.8  Potential pitfalls and final remarks
10  Errors and uncertainty in CFD modelling
  10.1  Errors and uncertainty in CFD
  10.2  Numerical errors
  10.3  Input uncertainty
  10.4  Physical model uncertainty
  10.5  Verification and validation
  10.6  Guidelines for best practice in CFD
  10.7  Reporting/documentation of CFD simulation inputs and results
  10.8  Summary

11  Methods for dealing with complex geometries
  11.1  Introduction
  11.2  Body-fitted co-ordinate grids for complex geometries
  11.3  Catesian vs, curvilinear grids-an example
  11.4  Curvilinear grids-difficulties
  11.5  Block-structured grids
  11.6  Unstructured grids
  11.7  Discretisation in unstructured grids
  11.8  Discretisation of the diffusion term
  11.9  Discretisation of the convective term
  11.10  Treatment of source terms
  11.11  Assembly of discretised equations
  11.12  Example calculations with unstructured grids
  11.13  Pressure-velocity coupling in unstructured meshes
  11.14  Staggered vs. co-located grid arrangements
  11.15  Extension of the face velocity interpolation method to unstructured meshes
  11.16  Summary
12  CFD modelling of combustion
  12.1  Introduction
  12.2  Application of the first law of thermodynamics to a combustion system
  12.3  Enthalpy of formation
  12.4  Some important relationships and properties of gaseous mixtures
  12.5  Stoichiometry
  12.6  Equivalence ratio
  12.7  Adiabatic flame temperature
  12.8  Equilibrium and dissociation
  12.9  Mechanisms of combustion and chemical kinetics
  12.10  Overall reactions and intermediate reactions
  12.11  Reaction rate
  12.12  Detailed mechanisms
  12.13  Reduced mechanisms
  12.14  Governing equations for combusting flows
  12.15  The simple chemical reacting system (SCRS)
  12.16  Modelling of a laminar diffusion flame- an example
  12.17  CFD calculation of turbulent non-premixed combustion
  12.18  SCRS model for turbulent combustion
  12.19  Probability density function approach
  12.20  Beta pdf
  12.21  The chemical equilibrium model
  12.22  Eddy break-up model of combustion
  12.23  Eddy dissipation concept
  12.24  Laminar flamelet model
  12.25  Generation of laminar flamelet libraries
  12.26  Statistics of the non-equilibrium parameter
  12.27  Pollutant formation in combustion
  12.28  Modelling of thermal NO formation in combustion
  12.29  Flamelet-based NO modelling
  12.30  An example to illustrate laminar flamelet modelling and NO modelling of a turbulent flame
  12.31  Other models for non-premixed combustion
  12.32  Modelling of premixed combustion

  12.33  Summary
13  Numerical calculation of radiative heat transfer
  13.1  Introduction
  13.2  Governing equations of radiative heat transfer
  13.3  Solution methods
  13.4  Four popular radiation calculation techniques suitable for CFD
    13.4.1  The Monte Carlo method
    13.4.2  The discrete transfer method
    13.4.3  Ray tracing
    13.4.4  The discrete ordinates method
    13.4.5  The finite volume method
  13.5  Illustrative examples
  13.6  Calculation of radiative properties in gaseous mixtures
  13.7  Summary
Appendix A  Accuracy of a flow simulation
Appendix B  Non-uniform grids
Appendix C  Calculation of source terms
Appendix D  Limiter functions used in Chapter 5
Appendix E  Derivation of one-dimensional governing equations for steady, incompressible flow through a planar nozzle
Appendix F  Alternative derivation for the term (n.grad oAi) in Chapter 11
Appendix G  Some examples
Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032