幫助中心 | 我的帳號 | 關於我們

近可積無窮維動力系統(英文版)(精)

  • 作者:郭柏靈//張雋//李景//曾蘭
  • 出版社:科學
  • ISBN:9787030595614
  • 出版日期:2021/01/01
  • 裝幀:精裝
  • 頁數:569
人民幣:RMB 298 元      售價:
放入購物車
加入收藏夾

內容大鋼
    《近可積無窮維動力系統》集中地介紹近可積無窮維動力系統的主要研究成果,其中包括近可積系統的若干基本概念和理論方法,幾類擾動的非線性方程同宿軌道的保持性,以及存在同宿軌道基礎上的混沌行為研究等。本書集中地介紹近可積無窮維動力系統的主要研究成果,其中包括近可積系統的若干基本概念和理論方法,幾類擾動的非線性方程同宿軌道的保持性,以及存在同宿軌道基礎上的混沌行為研究等,並對問題的關鍵所在給以清晰的闡述。

作者介紹
郭柏靈//張雋//李景//曾蘭

目錄
Chapter 1  Chaos for Nearly Integrable Systems
  1.1  Direct methods of perturbation theory for solitons
  1.2  Perturbation theory based on the inverse scattering transform
  1.3  Motion of a soliton in a driven Sine-Gordon equation
    1.3.1  Soliton motion of Sine-Gordon equation
    1.3.2  Motion of a SG soliton in the fields of two waves
    1.3.3  Stochastic dynamics of a three-dimensional bubble in a driven SG equation
    1.3.4  SG soliton similar to the Fermi-Pasta-Ulam problem
    1.3.5  Dynamical chaos of a breather under the action of an external field
    1.3.6  Dynamical chaos in the SG system with parametric excitation
    1.3.7  Stochastization of soliton lattices in the perturbed SG equation
  1.4  Motion of the soliton of nonlinear SchrSdinger equation with damping under the action of an external field
    1.4.1  Nonlinear SchrSdinger equation
    1.4.2  Stochastic dynamics of NLS solitons in a periodic potential
  1.5  Dynamical chaos of the KdV equation and the perturbation equations
    1.5.1  Chaotic state of the cnoidal wave in the periodic inhomogeneous medium
    1.5.2  Karamoto-Sivashinsky equation
Chapter 2  Some Numerical Results and Their Analysis
  2.1  Coherent structure and numerical calculation results
  2.2  Fundamental analysis
    2.2.1  Connections between NLS equation and Sine-Gordon equation
    2.2.2  Space independent fixed point
    2.2.3  Space dependent fixed point
    2.2.4  Integrable structure of nonlinear Schrodinger equation
    2.2.5  The Whisker ring of focusing nonlinear SchrSdinger equation
Chapter 3  Homoclinic Orbits in a Four Dimensional Model of a Perturbed Nonlinear Schrodinger Equation
  3.1  Dynamics and geometric structure for the unperturbed systerm
    3.1.1  M0 and Ws(M0) ∩ Wu(M0)
    3.1.2  The dynamics on M0
    3.1.3  The unperturbed homoclinic orbits and their relationship to the dynamics on Mo and Ws(M0) ∩ Wu(M0)
  3.2  Geometric structure of the perturbed systerm
    3.2.1  The persistence of M0, Ws(M0) and Wu(M0) under perturbation
    3.2.2  The dynamics on ride near resonance
  3.3  Fiber representations of stable and unstable manifolds
    3.3.1  Representation of Ws(M0) and Wu(M0) through homoclinic orbits
    3.3.2  An intuitive introduction to fibrations of stable and unstable manifolds
    3.3.3  A second example
    3.3.4  Fibers for Ws(M0) and Wu(M0) of the two mode equations
    3.3.5  Properties and characteristics of the fibers
    3.3.6  Fibers representations for the subset of Wu(qe) and Wsloc(A'CMε)
  3.4  Homoclinic orbits for qε
    3.4.1  Homoclinic coordinates and the hyperplane ?
    3.4.2  The Melnikov function for Ws(A C Me)∩Wu(qε)
    3.4.3  Explicit expression of the Meini
    3.6.2  Construction of the map P0 near the origin
    3.6.3  Construction of the map along the homoclinic orbits outside a neighborhood of the origin
    3.6.4  The full map, P = P0 o P1 : Π0 → Π0
    3.6,5  Verification of the hypotheses of the theorem for the two-mode truncation
Chapter 4  Homoelinic Orbits of a Damped and Forced Sine-Gordon Equation
  4.1  Structure of the unperturbed system
    4.1.1  The normaUy hyperbolic invariant manifold M
    4.1.2  The dynamics on M
    4.1.3  Ws(M), Wu(M) and the homoclinic manifold
    4.1.4  The dynamics on F and its relation to the dynamics in M
  4.2  Structure of the perturbed system
    4.2.1  The persistence of M, Ws(M) and Wu(M) under perturbation
    4.2.2  The dynamics on Mε
    4.2.3 The fibering of Ws(Ae) and Wu(Ae):the singular perturbation nature
  4.3  The existence of a homoclinic connection to Pε
    4.3.1  Wu(pe) □(特殊符號) Ws(Aε): The higher dimensional Melnikov theory
    4.3.2  Wu(pε) ∩ Ws(pe): a homoclinic orbit to pε
  4.4  Chaos: Silnikov's theorem
  4.5  An application:model dynamics of the damped, driven,nonlinear SchrSdinger equation
    4.5.1  The unperturbed integrable structure
    4.5.2  Dynamics near the resonance on Ae
    4.5.3  Calculation of the Melnikov function
    4.5.4  The existence of an orbit homoclinic to pε
    4.5.5  The geometrical interpretation of chaos in phase space
Chapter 5  Persistent Homoclinic Orbits for a Perturbed Nonlinear Schrodinger Equation
  5.1  Introduction
  5.2  Analysis of space-independent solutions and motion on the invariant plane
    5.2.1  Motion on the invariant plane
    5.2.2  The stable manifolds at Q in Πe
  5.3  The equations in a neighborhood of the circle of fixed points
    5.3.1  Basic equations
    5.3.2  Normal forms
    5.3.3  Local equations
  5.4  Theory of invariant manifolds
    5.4.1  Existence of local invariant manifolds
    5.4.2  The fibration for invariant manifolds
    5.4.3  Stable manifold to Q in Mε
  5.5  Global integrable theory
    5.5.1  Lax pair
    5.5.2  Zakharov-Shabat spectral problem
    5.5.3  The basic example
    5.5.4  Homoclinic orbits and whiskered tori
    5.5.5  An important invariant
    5.5.6  F'(qh)
  5.6  Persistent homoclinic orbit
    5.6.1  The first measurement
    5.6.2  The second measurement
    5.6.3  Existence of a homoclinic orbit
Chapter 6  Homoclinic Orbits and Chaos for the Discrete Disturbed Nonlinear Schrodinger Equation
  6.1  Integrable case

    6.1.1  Spectral theory of Ln
    6.1.2  Hyperbolic structure and homoclinic orbits
  6.2  Persistent invariant manifolds
    6.2.1  Persistent invariant plane
    6.2.2  Persistent invariant manifold theorem
    6.2.3  The proof of the local persistent invariant manifold theorem
  6.3  Feniehel fibers
    6.3.1  An example showing fenichel fibers
    6.3.2  Fiber theorem
    6.3.3  The unique explicit fenichel fiber for "figure 8 □(特殊符號) A"
  6.4  Melnikov measurement: Wu(qε) ∩ Wcsε
    6.4.1  Main argument
    6.4.2  Derivation of Melnikov integral
    6.4.3  Approximation
    6.4.4  Computation for MF1
    6.4.5  The intersection between Wu(qε) and Ws(Mε) □(特殊符號) Wcsε
  6.5  Existence of orbits homoclinic to qε: the second measurement
  6.6  General theory of symbolic dynamics
    6.6.1  General framework
    6.6.2  Smooth normal form reduction
    6.6.3  Some definitions
    6.6.4  Poincare map P10
    6.6.5  Poincare map p01
    6.6.6  Fixed point of Poincare map P = P01 o P10
    6.6.7  Smale horseshoes
    6.6.8  Symbol dynamics
  6.7  Application to discrete NLS systems
    6.7.1  Transformation of (6.6.1) to the form (6.1.3)
    6.7.2  The Generic assumptions
    6.7.3  Smale horseshoes and chaos created by a pair of homoclinic orbits in the discrete nonlinear Schroinger systems
Chapter 7  Persistent HomocUnic Orbits for the Perturbed Sine-Gordon Equation
  7.1  Persistent homoclinic orbits for a kind of Sine-Gordon equation under dissipative perurbation
  7.2  Persistent homoclinie orbits for another kind of Sine-Gordon equation under dissipative perturbation
  7.3  Persistent homoelinie orbits for a kind of Klein-Gordon equation under small perturbation
Chapter 8  Persistent Homoclinic Orbits of Perturbed High-order Nonlinear Schrodinger Equtions
  8.1  Persistent homoclinie orbits of a perturbed eubic-quintic NLS equation
    8.1.1  Some fundamental results
    8.1.2  The equations in a neighborhood of Cw
    8.1.3  Invariant manifolds
    8.1.4  Persistent homoclinic orbit
  8.2  Homoclinic orbits in a six dimensional model of derivative nonlinear Schrodinger equation
    8.2.1  The Fourier truncation of a perturbed derivative NLS equation
    8.2.2  Persistence of the normally hyperbolic invariant manifold
    8.2.3  Persistence of the homoclinic orbits
  8.3  Persistent homoclinic orbits for a perturbed coupled nonlinear Schrodinger system
    8.3.1  The preliminary results
    8.3.2  An equation in a neighborhood of Sw
    8.3.3  Existence of local invariant manifolds
  
  8.4  Persistent homoclinic orbits for a perturbed nonlinear Schrodinger equation with derivation term under a small perturbation
    8.4.1  The preliminary results
    8.4.2  Analysis of space-independent solutions
    8.4.3  Equation in a neighborhood of Cw
    8.4.4  Invariant manifolds
    8.4.5  Persistent homoclinic orbit
Chapter 9  Homoclinic Orbits of a Perturbed Nonlinear Schrodinger Equation
  9.1  Main theorems and establishment of basic equations
  9.2  Invariant manifolds and invariant foliations
  9.3  Homoclinic orbits
    9.3.1  Homoclinic orbits for unperturbed NLS
    9.3.2  The first measurement
    9.3.3  Second measurement
    9.3.4  Existence of a Homoclinic Orbit
Chapter 10  Morse Functions and Floquet Theory
  10.1  Morse and Melnikov functions for nonlinear SchrSdinger equation
    10.1.1  Floquet Spectral Theory
    10.1.2  Critical Structure of Fi
    10.1.3  The Morse description of the isospectral stratification
    10.1.4  A Melnikov vector
  10.2  Hill equation
  10.3  Topological classification of integrable partial differential equations
Bibliography

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032