幫助中心 | 我的帳號 | 關於我們

酉反射群(英文)/國外優秀數學著作原版系列

  • 作者:(澳)古斯塔夫·I.萊勒//唐納德·E.泰勒|責編:關虹玲//宋淼
  • 出版社:哈爾濱工業大學
  • ISBN:9787560391946
  • 出版日期:2020/11/01
  • 裝幀:平裝
  • 頁數:375
人民幣:RMB 58 元      售價:
放入購物車
加入收藏夾

內容大鋼
    復反射是固定在超平面上每個點的線性變換,它類似於通過萬花筒或鏡子排列觀看圖像時所經歷的轉換。本書使用線性變換的方法對n維復空間中由復反射產生的所有變換組進行了完整的分類,對不可約群進行了詳細的研究,對反射群的反射子群進行了完整的分類,充分討論了反射群元素的本征空間理論。書中附錄還概述了表示論、拓撲學和數學物理之間的聯繫。本書包含了100多個從簡單到具有一定難度的練習題,適合大學師生、研究生及數學愛好者參考閱讀,也適合代數、拓撲學和數學物理的研究人員參考閱讀。

作者介紹
(澳)古斯塔夫·I.萊勒//唐納德·E.泰勒|責編:關虹玲//宋淼

目錄
Introduction
  1. Overview of this book
  2. Some detail concerning the content
  3. Acknowledgements
  4. Leitfaden
Chapter 1. Preliminaries
  1. Hermitian forms
  2. Reflections
  3. Groups
  4. Modules and representations
  5. Irreducible unitary reflection groups
  6. Caftan matrices
  7. The field of definition
  Exercises
Chapter 2. The groups G(m, p, n)
  1. Primitivity and imprimitivity
  2. Wreath products and monomial representations
  3. Properties of the groups G(m, p, n)
  4. The imprimitive unitary reflection groups
  5. Imprimitive subgroups of primitive reflection groups
  6. Root systems for G(m, p, n)
  7. Generators for G(m, p, n)
  8. Invariant polynomials for G(m,p, n)
  Exercises
Chapter 3. Polynomial invariants
  1. Tensor and symmetric algebras
  2. The algebra of invariants
  3. Invariants of a finite group
  4. The action of a reflection
  5. The Shephard-Todd--Chevalley Theorem
  6. The coinvariant algebra
  Exercises
Chapter 4. Poincare series and characterisations of reflection groups
  1. Poincare series
  2. Exterior and symmetric algebras and Molien's Theorem
  3. A characterisation of finite reflection groups
  4. Exponents
  Exercises
Chapter 5. Quaternions and the finite subgroups of SU2 (C)
  1. The quaternions
  2. The groups Oa (R) and 04 (R)
  3. The groups SU2 (C) and U2 (C)
  4. The finite subgroups of the quaternions
  5. The finite subgroups of S03 (R) and SU2 (C)
  6. Quaternions, reflections and root systems
  Exercises
Chapter 6. Finite unitary reflection groups of rank two
  1. The primitive reflection subgroups of U2 (C)
  2. The reflection groups of type T
  3. The reflection groups of type O

  4. The reflection groups of type I
  5. Cartan matrices and the ring of definition
  6. Invariants
  Exercises
Chapter 7. Line systems
  1. Bounds online systems
  2. Star-closed Euclidean line systems
  3. Reflections and star-closed line systems
  4. Extensions of line systems
  5. Line systems for imprimitive reflection groups
  6. Line systems for primitive reflection groups
  7. The Goethals-Seidel decomposition for 3-systems
  8. Extensions of D(2) and Dn(3)
  9. Further structure of line systems in Cn
  10. Extensions of Euclidean line systems
  11. Extensions of.An, gn and Kn in Cn
  12. Extensions of 4-systems
  Exercises
Chapter 8. The Shephard and Todd classification
  1. Outline of the classification
  2. Blichfeldt's Theorem
  3. Consequences of Blichfeldt's Theorem
  4. Extensions of 5-systems
  5. Line systems and reflections of order three
  6. Extensions of ternary 6-systems
  7. The classification
  8. Root systems and the ring of definition
  9. Reduction modulo p
  10. Identification of the primitive reflection groups
  Exercises
Chapter 9. The orbit map, harmonic polynomials and semi-invariants
  1. The orbit map
  2. Skew invariants and the Jacobian
  3. The rank of the Jacobian
  4. Semi-invariants
  5. Differential operators
  6. The space of G-harmonic polynomials
  7. Steinberg's fixed point theorem
  Exercises
Chapter 10. Covariants and related polynomial identities
  1. The space of covariants
  2. Gutkin's Theorem
  3. Differential invariants
  4. Some special cases of covariants
  5. Two-variable Poincar6 series and specialisations
  Exercises
Chapter 11. Eigenspace theory and reflection subquotients
  1. Basic affine algebraic geometry
  2. Eigenspaces of elements of reflection groups
  3. Reflection subquotients of unitary reflection groups

  4. Regular elements
  5. Properties of the reflection subquotients
  6. Eigenvalues of pseudoregular elements
Chapter 12. Reflection cosets and twisted invariant theory
  1. Reflection cosets
  2. Twisted invariant theory
  3. Eigenspace theory for reflection cosets
  4. Subquotients and centralisers
  5. Parabolic subgroups and the coinvariant algebra
  6. Duality groups
  Exercises
Appendix A. Some background in commutative algebra
Appendix B. Forms over finite fields
  1. Basic definitions
  2. Witt's Theorem
  3. The Wall form, the spinor norm and Dickson's invariant
  4. Order formulae
  5. Reflections in finite orthogonal groups
Appendix C. Applications and further reading
  1. The space of regular elements
  2. Fundamental groups, braid groups, presentations
  3. Hecke algebras
  4. Reductive groups over finite fields
Appendix D. Tables
  1. The primitive unitary reflection groups
  2. Degrees and codegrees
  3. Cartan matrices
  4. Maximal subsystems
  5. Reflection cosets
Bibliography
Index of notation
Index
編輯手記

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032