幫助中心 | 我的帳號 | 關於我們

偏微分方程(第2版)(英文版)

  • 作者:(德)約斯特|責編:劉慧//高蓉
  • 出版社:世界圖書出版公司
  • ISBN:9787510032967
  • 出版日期:2011/04/01
  • 裝幀:平裝
  • 頁數:356
人民幣:RMB 69 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是一部講述偏微分方程理論的入門書籍。全書以橢圓偏微分為核心,系統講述了相關內容,涉及到不少非線性問題,如,最大值原理方法,拋物方程和變分法。書中講述了橢圓方程解的估計的主要方法,sobolev空間理論,弱解和強解,schauder估計,moser迭代。展示了橢圓,拋物和雙曲解以及布朗運動,半群之間的關係。

作者介紹
(德)約斯特|責編:劉慧//高蓉

目錄
Introduction: What Are Partial Differential Equations?
1.The Laplace Equation as the Prototype of an Elliptic Partial Differential Equation of Second Order
  1.1  Harmonic functions. Representation Formula for the Solution of the Dirichlet Problem on the Ball (Existence Techniques 0)
  1.2  Mean Value Properties of Harmonic Functions. Subharmonic Functions. The Maximum Principle
2.The Maximum Principle
  2.1  The Maximum Principle of E.Hopf
  2.2  The Maximum Principle of Alexandrov and Bakelman
  2.3  Maximum Principles for Nonlinear Differential Equations
3.Existence Techniques Ⅰ: Methods Based on the Maximum Principle
  3.1  Difference Methods: Discretization of Differential Equations
  3.2  The Perron Method
  3.3  The Alternating Method of H.A.Schwarz
  3.4  Boundary Regularity
4.Existence Techniques Ⅱ: Parabolic Methods. The Heat Equation
  4.1  The Heat Equation: efinition and Maximum Principles
  4.2  The Fundamental Solution of the Heat Equation. The Heat Equation and the Laplace Equation
  4.3  The Initial Boundary Value Problem for the Heat Equation
  4.4  Discrete Methods
5.Reaction-Diffusion Equations and Systems
  5.1  Reaction-Diffusion Equations
  5.2  Reaction-Diffusion Systems
  5.3  The Turing Mechanism
6.The Wave Equation and its Connections with the Laplace and Heat Equations
  6.1  The One-Dimensional Wave Equation
  6.2  The Mean Value Method: Solving the Wave Equation Through the Darboux Equation
  6.3  The Energy Inequality and the Relation with the Heat Equation
7.The Heat Equation, Semigroups, and Brownian Motion
  7.1  Semigroups
  7.2  Infinitesimal Generators of Semigroups
  7.3  Brownian Motion
8.The Dirichlet Principle. Variational Methods for the Solution of PDEs (Existence Techniques Ⅲ)
  8.1  Dirichlet's Principle
  8.2  The Sobolev Space W1,2
  8.3  Weak Solutions of the Poisson Equation
  8.4  Quadratic Variational Problems
  8.5  Abstract Hilbert Space Formulation of the Variational Problem. The Finite Element Method
  8.6  Convex Variational Problems
9.Sobolev Spaces and L2 Regularity Theory
  9.1  General Sobolev Spaces. Embedding Theorems of Sobolev, Morrey, and John-nirenberg
  9.2  L2-Regularity Theory: Interior Regularity of Weak Solutions of the Poisson Equation
  9.3  Boundary Regularity and Regularity Results for Solutions of General Linear Elliptic Equations
  9.4  Extensions of Sobolev Functions and Natural Boundary Conditions
  9.5  Eigenvalues of Elliptic Operators
10.Strong Solutions
  10.1  The Regularity Theory for Strong Solutions
  10.2  A Survey of the Lp-Regularity Theory and Applications to Solutions of Semilinear Elliptic Equations
11.The Regularity Theory of Schauder and the Continuity Method (Existence Techniques Ⅳ)
  11.1  Cα-Regularity Theory for the Poisson Equation
  11.2  The Schauder Estimates
  11.3  Existence Techniques Ⅳ: The Continuity Method

12.The Moser Iteration Method and the Regularity Theorem of de Giorgi and Nash
  12.1  The Moser-Harnack Inequality
  12.2  Properties of Solutions of Elliptic Equations
  12.3  Regularity of Minimizers of Variational Problems
Appendix.Banach and Hilbert Spaces. The Lp-Spaces
References
Index of Notation
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032