幫助中心 | 我的帳號 | 關於我們

幾何三部曲(第1卷幾何的公理化方法)(英文版)

  • 作者:(比)F.博斯克斯|責編:劉慧//高蓉
  • 出版社:世界圖書出版公司
  • ISBN:9787519220730
  • 出版日期:2017/01/01
  • 裝幀:平裝
  • 頁數:403
人民幣:RMB 79 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書以幾何公理化方法的歷史發展成果為基礎,系統給出了歐幾里得幾何、非歐幾里得幾何和投影幾何研究的現代方法。公理化幾何是形式化數學的起源,其中有很多著名問題有待解決。對這些著名問題的研究往往會導致許多研究領域特別是代數研究領域的產生。基於公理化思想的數學理論是現代數學的基本特徵。本書詳盡地論述了公理化幾何研究的內容,也給出了許多著名問題的完備性證明。

作者介紹
(比)F.博斯克斯|責編:劉慧//高蓉

目錄
1  Pre-Hellenic Antiquity
  1.1  Prehistory
  1.2  Egypt
  1.3  Mesopotamia
  1.4  Problems
  1.5  Exercises
2  Some Pioneers of Greek Geometry
  2.1  Thales of Miletus
  2.2  Pythagoras and the Golden Ratio
  2.3  Trisecting the Angle
  2.4  Squaring the Circle
  2.5  Duplicating the Cube
  2.6  Incommensurable Magnitudes
  2.7  The Method of Exhaustion
  2.8  On the Continuity of Space
  2.9  Problems
  2.10  Exercises
3  Euclid's Elements
  3.1  Book 1: Straight Lines
  3.2  Book 2: Geometric Algebra
  3.3  Book 3: Circles
  3.4  Book 4: Polygons
  3.5  Book 5: Ratios
  3.6  Book 6: Similarities
  3.7  Book 7: Divisibility in Arithmetic
  3.8  Book 8: Geometric Progressions
  3.9  Book 9: More on Numbers
  3.10  Book 10: Incommensurable Magnitudes
  3.11  Book 11: Solid Geometry
  3.12  Book 12: The Method of Exhaustion
  3.13  Book 13: Regular Polyhedrons
  3.14  Problems
  3.15  Exercises
4  Some Masters of Greek Geometry
  4.1  Archimedes on the Circle
  4.2  Archimedes on the Number n
  4.3  Archimedes on the Sphere
  4.4  Archimedes on the Parabola
  4.5  Archimedes on the Spiral
  4.6  Apollonius on Conical Sections
  4.7  Apollonius on Conjugate Directions
  4.8  Apollonius on Tangents
  4.9  Apollonius on Poles and Polar Lines
  4.10  Apollonius on Foci
  4.11  Heron on the Triangle
  4.12  Menelaus on Trigonometry
  4.13  Ptolemy on Trigonometry
  4.14  Pappus on Anharmonic Ratios
  4.15  Problems
  4.16  Exercises

5  Post-Hellenic Euclidean Geometry
  5.1  Still Chasing the Number r
  5.2  The Medians of a Triangle
  5.3  The Altitudes of a Triangle
  5.4  Ceva's Theorem
  5.5  The Trisectrices of a Triangle
  5.6  Another Look at the Foci of Conics
  5.7  Inversions in the Plane
  5.8  Inversions in Solid Space
  5.9  The Stereographic Projection
  5.10  Let us Burn our Rulers
  5.11  Problems
  5.12  Exercises
6  Projective Geometry
  6.1  Perspective Representation
  6.2  Projective Versus Euclidean
  6.3  Anharmonic Ratio
  6.4  The Desargues and the Pappus Theorems
  6.5  Axiomatic Projective Geometry
  6.6  Arguesian and Pappian Planes
  6.7  The Projective Plane over a Skew Field
  6.8  The Hilbert Theorems
  6.9  Problems
  6.10  Exercises
7  Non-Euclidean Geometry
  7.1  Chasing Euclid's Fifth Postulate
  7.2  The Saccheri Quadrilaterals
  7.3  The Angles of a Triangle
  7.4  The Limit Parallels
  7.5  The Area of a Triangle
  7.6  The Beltrami-Klein and Poincare Disks
  7.7  Problems
  7.8  Exercises
8  Hilbert's Axiomatization of the Plane
  8.1  The Axioms of Incidence
  8.2  The Axioms of Order
  8.3  The Axioms of Congruence
  8.4  The Axiom of Continuity
  8.5  The Axioms of Parallelism
  8.6  Problems
  8.7  Exercises
Appendix A  Constructibility
  A.1  The Minimal Polynomial
  A.2  The Eisenstein Criterion
  A.3  Ruler and Compass Constructibility
  A.4  Constructibility Versus Field Theory
Appendix B  The Classical Problems
  B.1  Duplicating the Cube
  B.2  Trisecting the Angle
  B.3  Squaring the Circle

Appendix C  Regular Polygons
  C.1  What the Greek Geometers Knew
  C.2  The Problem in Algebraic Terms
  C.3  Fermat Primes
  C.4  Elements of Modular Arithmetic
  C.5  AFlavour of Galois Theory
  C.6  The Gauss-Wantzel Theorem
References and Further Reading
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032