幫助中心 | 我的帳號 | 關於我們

現代傅里葉分析(第3版)(英文版)

  • 作者:(美)L.格拉法克斯|責編:劉慧//高蓉
  • 出版社:世界圖書出版公司
  • ISBN:9787519226145
  • 出版日期:2017/08/01
  • 裝幀:平裝
  • 頁數:624
人民幣:RMB 109 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書旨在為讀者提供學習歐幾里得調和解析領域的理論基礎,各章有習題及提示。原始版本是以單卷集發布的,但是由於其體積、範圍和新材料的增加,第2版改為兩卷集發行,新增時頻分析和Carleson-Hunt定理等內容。
    第3版在第2版的基礎上修訂新增一些章節,並將加權不等式一章從《現代傅里葉分析》調整到《經典傅里葉分析》,新增若干實例和應用內容,以及一些習題和提示。

作者介紹
(美)L.格拉法克斯|責編:劉慧//高蓉

目錄
1  Smoothness and Function Spaces
  1.1  Smooth Functions and Tempered Distributions
    1.1.1  Space of Tempered Distributions Modulo Polynomials
    1.1.2  Calder6n Reproducing Formula
    Exercises
  1.2  Laplacian, Riesz Potentials, and Bessel Potentials
    1.2.1  Riesz Potentials
    1.2.2  Bessel Potentials
    Exercises
  1.3  Sobolev Spaces
    1.3.1  Definition and Basic Properties of General Sobolev Spaces
    1.3.2  Littlewood-Paley Characterization of Inhomogeneous Sobolev Spaces
    1.3.3  Littlewood-Paley Characterization of Homogeneous Sobolev Spaces
    Exercises
  1.4  Lipschitz Spaces
    1.4.1  Introduction to Lipschitz Spaces
    1.4.2  Littlewood-Paley Characterization of Homogeneous Lipschitz Spaces
    1.4.3  Littlewood-Paley Characterization of Inhomogeneous Lipschitz Spaces
    Exercises
2  Hardy Spaces, Besov Spaces, and Triebel-Lizorkin Spaces
  2.1  Hardy Spaces
    2.1.1  Definition of Hardy Spaces
    2.1.2  Quasi-norm Equivalence of Several Maximal Functions
    2.1.3  Consequences of the Characterizations of Hardy Spaces
    2.1.4  Vector-Valued Hp and Its Characterizations
    2.1.5  Singular Integrals on vector-valued Hardy Spaces
    Exercises
  2.2  Function Spaces and the Square Function Characterization of Hardy Spaces
    2.2.1  Introduction to Function Spaces
    2.2.2  Properties of Functions with Compactly Supported Fourier Transforms
    2.2.3  Equivalence of Function Space Norms
    2.2.4  The Littlewood-Paley Characterization of Hardy Spaces
    Exercises
  2.3  Atomic Decomposition of Homogeneous Triebel-Lizorkin Spaces
    2.3.1  Embeddings and Completeness of Triebel-Lizorkin Spaces
    2.3.2  The Space of Triebel-Lizorkin Sequences
    2.3.3  The Smooth Atomic Decomposition of Homogeneous Triebel-Lizorkin Spaces
    2.3.4  The Nonsmooth Atomic Decomposition of Homogeneous Triebel-Lizorkin Spaces
    2.3.5  Atomic Decomposition of Hardy Spaces
    Exercises
  2.4  Singular Integrals on Function Spaces
    2.4.1  Singular Integrals on the Hardy Space H1
    2.4.2  Singular Integrals on Besov-Lipschitz Spaces
    2.4.3  Singular Integrals on HP(Rn)
    2.4.4  A Singular Integral Characterization of H1 (Rn)
    Exercises
3  BMO and Carleson Measures
  3.1  Functions of Bounded Mean Oscillation
    3.1.1  Definition and Basic Properties of BMO
    3.1.2  The John-Nirenberg Theorem

    3.1.3  Consequences of Theorem 3
    Exercises
  3.2  Duality between H1 and BMO
    Exercises
  3.3  Nontangential Maximal Functions and Carleson Measures
    3.3.1  Definition and Basic Properties of Carleson Measures
    3.3.2  BMO Functions and Carleson Measures
    Exercises
  3.4  The Sharp Maximal Function
    3.4.1  Definition and Basic Properties of the Sharp Maximal Function
    3.4.2  A Good Lambda Estimate for the Sharp Function
    3.4.3  Interpolation Using BMO
    3.4.4  Estimates for Singular Integrals Involving the Sharp Function
    Exercises
  3.5  Commutators of Singular Integrals with BMO Functions
    3.5.1  An Orlicz-Type Maximal Function
    3.5.2  A Pointwise Estimate for the Commutator
    3.5.3  LP Boundedness of the Commutator
    Exercises
4  Singular Integrals of Nonconvolution Type
  4.1  General Background and the Role of BMO
    4.1.1  Standard Kernels
    4.1.2  Operators Associated with Standard Kernels
    4.1.3  Calderon-Zygmund Operators Acting on Bounded Functions
    Exercises
  4.2  Consequences of L2Boundedness
    4.2.1  mWeak Type (1,1) and LP Boundedness of Singular Integrals、
    4.2.2  Boundedness of Maximal Singular Integrals
    4.2.3  H1→L1and L∞→BMO Boundedness of Singular Integrals
    Exercises
  4.3  The T (1) Theorem
    4.3.1  Preliminaries and Statement of the Theorem
    4.3.2  The Proof of Theorem 4
    4.3.3  An Application
    Exercises
  4.4  Paraproducts
    4.4.1  Introduction to Paraproducts
    4.4.2  L' Boundedness of Paraproducts
    4.4.3  Fundamental Properties of Paraproducts
    Exercises
  4.5  An Almost Orthogonality Lemma and Applications
    4.5.1  The Cotlar-Knapp-Stein Almost Orthogonality Lemma
    4.5.2  An Application
    4.5.3  Almost Orthogonality and the T (1) Theorem
    4.5.4  Pseudodifferential Operators
    Exercises
  4.6  The Cauchy Integral of Calderon and the T (b) Theorem
    4.6.1  Introduction of the Cauchy Integral Operator along a Lipschitz Curve
    4.6.2  Resolution of the Cauchy Integral and Reduction of Its L2Boundedness to a Quadratic Estimate
    4.6.3  A Quadratic T (1) Type Theorem

    4.6.4  A T (b) Theorem and the L2 Boundedness of the Cauchy Integral
    Exercises
  4.7  Square Roots of Elliptic Operators
    4.7.1  Preliminaries and Statement of the Main Result
    4.7.2  Estimates for Elliptic Operators on Rn
    4.7.3  Reduction to a Quadratic Estimate
    4.7.4  Reduction to a Carleson Measure Estimate
    4.7.5  The T (b) Argument
    4.7.6  Proof of Lemma 4
    Exercises
5  Boundedness and Convergence of Fourier Integrals
  5.1  The Multiplier Problem for the Ball
    5.1.1  Sprouting of Triangles
    5.1.2  The counterexample
    Exercises
  5.2  Bochner-Riesz Means and the Carleson-Sjlin Theorem
    5.2.1  The Bochner-Riesz Kernel and Simple Estimates
    5.2.2  The Carleson-Sjolin Theorem
    5.2.3  The Kakeya Maximal Function
    5.2.4  Boundedness of a Square Function
    5.2.5  The Proof of Lemma 5
    Exercises
  5.3  Kakeya Maximal Operators
    5.3.1  Maximal Functions Associated with a Set of Directions
    5.3.2  The Boundedness of tzy on LP(R2)
    5.3.3  The Higher-Dimensional Kakeya Maximal Operator
    Exercises
  5.4  Fourier Transform Restriction and Bochner-Riesz Means
    5.4.1  Necessary Conditions for Rp→g(Sn-1) to Hold
    5.4.2  A Restriction Theorem for the Fourier Transfornm
    5.4.3  Applications to Bochner-Riesz Multipliers
    5.4.4  The Full Restriction Theorem on R2
    Exercises
  5.5  Almost Everywhere Convergence of Bochner-Riesz Means
    5.5.1  A Counterexample for the Maximal Bochner-Riesz Operator
    5.5.2  Almost Everywhere Summability of the Bochner-Riesz Means
    5.5.3  Estimates for Radial Multipliers
    Exercises
6  Time-Frequency Analysis and the Carleson-Hunt Theorem
  6.1  Almost Everywhere Convergence of Fourier Integrals
    6.1.1  Preliminaries
    6.1.2  Discretization of the Carleson Operator
    6.1.3  Linearization of a Maximal Dyadic Sum
    6.1.4  Iterative Selection of Sets of Tiles with Large Mass and Energy
    6.1.5  Proof of the Mass Lemma 6
    6.1.6  Proof of Energy Lemma 6
6.1.7Proof of the Basic Estimate Lemma 6.1.10
    Exercises
  6.2  Distributional Estimates for the Carleson Operator
    6.2.1  The Main Theorem and Preliminary Reductions

    6.2.2  The Proof of Estimate(6.2.18)
    6.2.3  The Proof of Estimate(6.2.19)
    6.2.4  The Proof of Lemma 6
    Exercises
  6.3  The Maximal Carleson Operator and Weighted Estimates
    Exercises
7  Multilinear Harmonic Analysis
  7.1  Multilinear Operators
    7.1.1  Examples and initial results
    7.1.2  Kernels and Duality of m-linear Operators
    7.1.3  Multilinear Convolution Operators with Nonnegative Kernels
    Exercises
  7.2  Multilinear Interpolation
    7.2.1  Real Interpolation for Multilinear Operators
    7.2.2  Proof of Theorem 7
    7.2.3  Proofs of Lemmas 7.2.6 and 7
    7.2.4  Multilinear Complex Interpolation
    7.2.5  Multilinear Interpolation between Adjoint Operators
    Exercises
  7.3  Vector-valued Estimates and Multilinear Convolution Operators
    7.3.1  Multilinear Vector-valued Inequalities
    7.3.2  Multilinear Convolution and Multiplier Operators
    7.3.3  Regularizations of Multilinear Symbols and Consequences
    7.3.4  Duality of Multilinear Multiplier Operators
    Exercises
  7.4  Calderon-Zygmund Operators of Several Functions
    7.4.1  Multilinear Calderon-Zygmund Theorem
    7.4.2  A Necessary and Sufficient Condition for the Boundedness of Multilinear Calder6n-Zygmund Operators
    Exercises
  7.5  Multilinear Multiplier Theorems
    7.5.1  Some Preliminary Facts
    7.5.2  Coifman-Meyer Method
    7.5.3  Hormander-Mihlin Multiplier Condition
    7.5.4  Proof of Main Result
    Exercises
  7.6  An Application Concerning the Leibniz Rule of Fractional Differentiation
    7.6.1  Preliminary Lemma
    7.6.2  Proof of Theorem 7
    Exercises
A  The Schur Lemma
  A.1  The Classical Schur Lemma
  A.2  Schur's Lemma for Positive Operators
  A.3  An Example
  A.4  Historical Remarks
B  Smoothness and Vanishing Moments
  B.1  The Case of No Cancellation
  B.2  One Function has Cancellation
  B.3  One Function has Cancellation:An Example
  B.4  Both Functions have Cancellation: An Example
  B.5  The Case of Three Factors with No Cancellation

Glossary
References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032