幫助中心 | 我的帳號 | 關於我們

應用預測建模(英文版)

  • 作者:(美)M.庫恩//K.約翰遜|責編:劉慧//高蓉
  • 出版社:世界圖書出版公司
  • ISBN:9787519220891
  • 出版日期:2017/06/01
  • 裝幀:平裝
  • 頁數:600
人民幣:RMB 199 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是一部關於數據分析的經典教材,聚焦預測建模的實際應用,如如何進行數據預處理、模型調優、預測變數重要性度量、變數選擇等。讀者可以從中學到許多建模方法以及提高對許多常用的、現代的有效模型的認識,如線性回歸、非線性回歸和分類模型,涉及樹方法、支持向量機等。書中還涉及從數據預處理到建模再到模型評估和選擇的整個過程,以及背後的統計思想,涉及各種回歸技術和分類技術。

作者介紹
(美)M.庫恩//K.約翰遜|責編:劉慧//高蓉

目錄
  1 Introduction
    1.1 Prediction Versus Interpretation
    1.2 Key Ingredients of Predictive Models
    1.3 Terminology
    1.4 Example Data Sets and Typical Data Scenarios
    1.5 Overview
    1.6 Notation
Part Ⅰ General Strategies
  2 A Short Tour of the Predictive Modeling Process
    2.1 Case Study: Predicting Fuel Economy
    2.2 Themes
    2.3 Summary
  3 Data Pre-processing
    3.1 Case Study: Cell Segmentation in High-Content Screening
    3.2 Data Transformations for Individual Predictors
    3.3 Data Transformations for Multiple Predictors
    3.4 Dealing with Missing Values
    3.5 Removing Predictors
    3.6 Adding Predictors
    3.7 Binning Predictors
    3.8 Computing
    Exercises
  4 Over-Fitting and Model Tuning
    4.1 The Problem of Over-Fitting
    4.2 Model Tuning
    4.3 Data Splitting
    4.4 Resampling Techniques
    4.5 Case Study: Credit Scoring
    4.6 Choosing Final Tuning Parameters
    4.7 Data Splitting Recommendations
    4.8 Choosing Between Models
    4.9 Computing
    Exercises
Part Ⅱ Regression Models
  5 Measuring Performance in Regression Models
    5.1 Quantitative Measures of Performance
    5.2 The Variance-Bias Trade-off
    5.3 Computing
  6 Linear Regression and Its Cousins
    6.1 Case Study: Quantitative Structure-Activity Relationshir Modeling
    6.2 Linear Regression
    6.3 Partial Least Squares
    6.4 Penalized Models
    6.5 Computing
    Exercises
  7 Nonlinear Regression Models
    7.1 Neural Networks
    7.2 Multivariate Adaptive Regression Splines
    7.3 Support Vector Machines
    7.4 K-Nearest Neighbors

    7.5 Computing
    Exercises
  8 Regression Trees and Rule-Based Models
    8.1 Basic Regression Trees
    8.2 Regression Model Trees
    8.3 Rule-Based Models
    8.4 Bagged Trees
    8.5 Random Forests
    8.6 Boosting
    8.7 Cubist
    8.8 Computing
    Exercises
  9 A Summary of Solubility Models
  10 Case Study: Compressive Strength of Concrete Mixtures
    10.1 Model Building Strategy
    10.2 Model Performance
    10.3 Optimizing Compressive Strength
    10.4 Computing
Part Ⅲ Classification Models
  11 Measuring Performance in Classification Models
    11.1 Class Predictions
    11.2 Evaluating Predicted Classes
    11.3 Evaluating Class Probabilities
    11.4 Computing
  12 Discriminant Analysis and Other Linear Classification Models
    12.1 Case Study: Predicting Successful Grant Applications
    12.2 Logistic Regression
    12.3 Linear Discriminant Analysis
    12.4 Partial Least Squares Discriminant Analysis
    12.5 Penalized Models
    12.6 Nearest Shrunken Centroids
    12.7 Computing
    Exercises
  13 Nonlinear Classification Models
    13.1 Nonlinear Discriminant Analysis
    13.2 Neural Networks
    13.3 Flexible Discriminant Analysis
    13.4 Support Vector Machines
    13.5 K-Nearest Neighbors
    13.6 Naive Bayes
    13.7 Computing
    Exercises
  14 Classification Trees and Rule-Based Models
    14.1 Basic Classification Trees
    14.2 Rule-Based Models
    14.3 Bagged Trees
    14.4 Random Forests
    14.5 Boosting
    14.6 C5.0
    14.7 Comparing Two Encodings of Categorical Predictors

    14.8 Computing
    Exercises
  15 A Summary of Grant Application Models
  16 Remedies for Severe Class Imbalance
    16.1 Case Study: Predicting Caravan Policy Ownership
    16.2 The Effect of Class Imbalance
    16.3 Model Tuning
    16.4 Alternate Cutoffs
    16.5 Adjusting Prior Probabilities
    16.6 Unequal Case Weights
    16.7 Sampling Methods
    16.8 Cost-Sensitive Training
    16.9 Computing
    Exercises
  17 Case Study: Job Scheduling
    17.1 Data Splitting and Model Strategy
    17.2 Results
    17.3 Computing
Part Ⅳ Other Considerations
  18 Measuring Predictor Importance
    18.1 Numeric Outcomes
    18.2 Categorical Outcomes
    18.3 Other Approaches
    18.4 Computing
    Exercises
  19 An Introduction to Feature Selection
    19.11 Consequences of Using Non-informative Predictors
    19.12 Approaches for Reducing the Number of Predictor
    19.13 Wrapper Methods
    19.14 Filter Methods
    19.15 Selection Bias
    19.16 Case Study: Predicting Cognitive Impairment
    19.17 Computing
    Exercises
  20 Factors That Can Affect Model Performance
    20.1 Type Ⅲ Errors
    20.2 Measurement Error in the Outcome
    20.3 Measurement Error in the Predictors
    20.4 Discretizing Continuous Outcomes
    20.5 When Should You Trust Your Model's Prediction?
    20.6 The Impact of a Large Sample
    20.7 Computing
    Exercises
Appendix
  A A Summary of Various Models
  B An Introduction to R
    B.1 Start-Up and Getting Help
    B.2 Packages
    B.3 Creating Objects
    B.4 Data Types and Basic Structures

    B.5 Working with Rectangular Data Sets
    B.6 Objects and Classes
    B.7 R Functions
    B.8 The Three Faces of =
    B.9 The AppliedPredictiveModeling Package
    B.10 The caret Package
    B.11 Software Used in this Text
  C Interesting Web Sites
References
Indicies
Computing
General

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032