幫助中心 | 我的帳號 | 關於我們

幾何三部曲(第2卷幾何的代數方法)(英文版)

  • 作者:(比)F.博斯克斯|責編:劉慧//高蓉
  • 出版社:世界圖書出版公司
  • ISBN:9787519220754
  • 出版日期:2017/01/01
  • 裝幀:平裝
  • 頁數:430
人民幣:RMB 79 元      售價:
放入購物車
加入收藏夾

內容大鋼
    復投影平面中代數曲線的研究是幾何應用如密碼技術研究的重要內容,也是線性幾何研究向代數幾何研究的自然過渡。本書論述了幾何空間中的各種不同代數方法,給出了解析幾何、仿射幾何、歐幾里得幾何和投影幾何研究的具體內容,並詳盡地描述了各類幾何空間和代數曲線的性質。

作者介紹
(比)F.博斯克斯|責編:劉慧//高蓉

目錄
1 The Birth of Analytic Geometry
  1.1 Fermat's Analytic Geometry
  1.2 Descartes' Analytic Geometry
  1.3 More on Cartesian Systems of Coordinates
  1.4 Non-Cartesian Systems of Coordinates
  1.5 Computing Distances and Angles
  1.6 Planes and Lines in Solid Geometry
  1.7 The Cross Product
  1.8 Forgetting the Origin
  1.9 The Tangent to a Curve
  1.10 The Conics
  1.11 The Ellipse
  1.12 The Hyperbola
  1.13 The Parabola
  1.14 The Quadrics
  1.15 The Ruled Quadrics
  1.16 Problems
  1.17 Exercises
2 Affine Geometry
  2.1 Affine Spaces over a Field
  2.2 Examples of Affine Spaces
  2.3 Affine Subspaces
  2.4 Parallel Subspaces
  2.5 Generated Subspaces
  2.6 Supplementary Subspaces
  2.7 Lines and Planes
  2.8 Barycenters
  2.9 Barycentric Coordinates
  2.10 Triangles
  2.11 Parallelograms
  2.12 Affine Transformations
  2.13 Affine Isomorphisms
  2.14 Translations
  2.15 Projections
  2.16 Symmetries
  2.17 Homotheties and Affinities
  2.18 The Intercept Thales Theorem
  2.19 Affine Coordinates
  2.20 Change of Coordinates
  2.21 The Equations of a Subspace
  2.22 The Matrix of an Affine Transformation
  2.23 The Quadrics
  2.24 The Reduced Equation of a Quadric
  2.25 The Symmetries of a Quadric
  2.26 The Equation of a Non-degenerate Quadric
  2.27 Problems
  2.28 Exercises
3 More on Real Affine Spaces
  3.1 About Left, Right and Between
  3.2 Orientation of a Real Affine Space

  3.3 Direct and Inverse Affine Isomorphisms
  3.4 Parallelepipeds and Half Spaces
  3.5 Pasch's Theorem
  3.6 Affine Classification of Real Quadrics
  3.7 Problems
  3.8 Exercises
4 Euclidean Geometry
  4.1 Metric Geometry
  4.2 Defining Lengths and Angles
  4.3 Metric Properties of Euclidean Spaces
  4.4 Rectangles, Diamonds and Squares
  4.5 Examples of Euclidean Spaces
  4.6 Orthonormal Bases
  4.7 Polar Coordinates
  4.8 Orthogonal Projections
  4.9 Some Approximation Problems
  4.10 Isometries
  4.11 Classification of Isometries
  4.12 Rotations
  4.13 Similarities
  4.14 Euclidean Quadrics
  4.15 Problems
  4.16 Exercises
5 Hermitian Spaces
  5.1 Hermitian Products
  5.2 Orthonormal Bases
  5.3 The Metric Structure of Hermitian Spaces
  5.4 Complex Quadrics
  5.5 Problems
  5.6 Exercises
6 Projective Geometry
  6.1 Projective Spaces over a Field
  6.2 Projective Subspaces
  6.3 The Duality Principle
  6.4 Homogeneous Coordinates
  6.5 Projective Basis
  6.6 The Anharmonic Ratio
  6.7 Projective Transformations
  6.8 Desargues' Theorem
  6.9 Pappus' Theorem
  6.10 Fano's Theorem
  6.11 Harmonic Quadruples
  6.12 The Axioms of Projective Geometry
  6.13 Projective Quadrics
  6.14 Duality with Respect to a Quadric
  6.15 Poles and Polar Hyperplanes
  6.16 Tangent Space to a Quadric
  6.17 Projective Conics
  6.18 The Anharmonic Ratio Along a Conic
  6.19 The Pascal and Brianchon Theorems

  6.20 Affine Versus Projective
  6.21 Real Quadrics
  6.22 The Topology of Projective Real Spaces
  6.23 Problems
  6.24 Exercises
7 Algebraic Curves
  7.1 Looking for the Right Context
  7.2 The Equation of an Algebraic Curve
  7.3 The Degree of a Curve
  7.4 Tangents and Multiple Points
  7.5 Examples of Singularities
  7.6 Inflexion Points
  7.7 The Bezout Theorem
  7.8 Curves Through Points
  7.9 The Number of Multiplicities
  7.10 Conics
  7.11 Cubics and the Cramer Paradox
  7.12 Inflexion Points of a Cubic
  7.13 The Group of a Cubic
  7.14 Rational Curves
  7.15 A Criterion of Rationality
  7.16 Problems
  7.17 Exercises
Appendix A Polynomials over a Field
  A.1 Polynomials Versus Polynomial Functions
  A.2 Euclidean Division
  A.3 The Bezout Theorem
  A.4 Irreducible Polynomials
  A.5 The Greatest Common Divisor
  A.6 Roots of a Polynomial
  A.7 Adding Roots to a Polynomial
  A.8 The Derivative of a Polynomial
Appendix B Polynomialsin Several Variables
  B.1 Roots
  B.2 Polynomial Domains
  B.3 Quotient Field
  B.4 Irreducible Polynomials
  B.5 Partial Derivatives
Appendix C Homogeneous Polynomials
  C.1 Basic Properties
  C.2 Homogeneous Versus Non-homogeneous
Appendix D Resultants
  D.1 The Resultant of two Polynomials
  D.2 Roots Versus Divisibility
  D.3 The Resultant of Homogeneous Polynomials
Appendix E Symmetric Polynomials
  E.1 Elementary Symmetric Polynomials
  E.2 The Structural Theorem
Appendix F Complex Numbers
  F.1 The Field of Complex Numbers

  F.2 Modulus, Argument and Exponential
  F.3 The Fundamental Theorem of Algebra
  F.4 More on Complex and Real Polynomials
Appendix G Quadratic Forms
  G.1 Quadratic Forms over a Field
  G.2 Conjugation and Isotropy
  G.3 Real Quadratic Forms
  G.4 Quadratic Forms on Euclidean Spaces
  G.5 On Complex Quadratic Forms
Appendix H Dual Spaces
  H.1 The Dual of a Vector Space
  H.2 Mixed Orthogonality
References and Further Reading
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032