幫助中心 | 我的帳號 | 關於我們

高等線性代數(第3版)(英文版)

  • 作者:(美)羅曼|責編:劉慧//高蓉
  • 出版社:世界圖書出版公司
  • ISBN:9787506292528
  • 出版日期:2008/10/01
  • 裝幀:平裝
  • 頁數:522
人民幣:RMB 119 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是Springer《數學研究生教材》第135卷。全書分為兩部分,第一部分主要闡述線性代數基本理論,第二部分對九個專題做了討論。目次:(一)線性代數基本理論:矢量空間;線性變換;同構定理;模;通過理想整環建立的模,線性運算元結構;特徵值和特徵向量;實與復內積空間;譜定理用於正規運算元。(二)專題:度量向量空間;度量空間,希耳伯特空間;張量乘積仿射幾何學;啞運算。本書讀者對象為數學及有關專業高年級大學生和研究生。

作者介紹
(美)羅曼|責編:劉慧//高蓉

目錄
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Preliminaries
  Part 1: Preliminaries
  Part 2: Algebraic Structures
Part Ⅰ  Basic Linear Algebra
  1  Vector Spaces
    Vector Spaces
    Subspaces
    Direct Sums
    Spanning Sets and Linear Independence
    The Dimension of a Vector Space
    Ordered Bases and Coordinate Matrices
    The Row and Column Spaces of a Matrix
    The Complexification of a Real Vector Space
    Exercises
  2  Linear Transformations
    Linear Transformations
    The Kernel and Image of a Linear Transformation
    Isomorphisms
    The Rank Plus Nullity Theorem
    Linear Transformations from Fn to Fm
    Change of Basis Matrices
    The Matrix of a Linear Transformation
    Change of Bases for Linear Transformations
    Equivalence of Matrices
    Similarity of Matrices
    Similarity of Operators
    Invariant Subspaces and Reducing Pairs
    Projection Operators
    Topological Vector Spaces
    Linear Operators on Vc
    Exercises
  3  The Isomorphism Theorems
    Quotient Spaces
    The Universal Property of Quotients and the First Isomorphism Theorem
    Quotient Spaces, Complements and Codimension
    Additional Isomorphism Theorems
    Linear Functionals
    Dual Bases
    Reflexivity
    Annihilators
    Operator Adjoints
    Exercises
  4  Modules Ⅰ: Basic Properties
    Motivation
    Modules
    Submodules
    Spanning Sets

    Linear Independence
    Torsion Elements
    Annihilators
    Free Modules
    Homomorphisms
    Quotient Modules
    The Correspondence and Isomorphism Theorems
    Direct Sums and Direct Summands
    Modules Are Not as Nice as Vector Spaces
    Exercises
  5  Modules Ⅱ: Free and Noetherian Modules
    The Rank of a Free Module
    Free Modules and Epimorphisms
    Noetherian Modules
    The Hilbert Basis Theorem
    Exercises
  6  Modules over a Principal Ideal Domain
    Annihilators and Orders
    Cyclic Modules
    Free Modules over a Principal Ideal Domain
    Torsion-Free and Free Modules
    The Primary Cyclic Decomposition Theorem
    The Invariant Factor Decomposition
    Characterizing Cyclic Modules
    Indecomposable Modules
    Exercises
  7  The Structure of a Linear Operator
    The Module Associated with a Linear Operator
    The Primary Cyclic Decomposition of VT
    The Characteristic Polynomial
    Cyclic and Indecomposable Modules
    The Big Picture
    The Rational Canonical Form
    Exercises
  8  Eigenvalues and Eigenvectors
    Eigenvalues and Eigenvectors
    Geometric and Algebraic Multiplicities
    The Jordan Canonical Form
    Triangularizability and Schur's Theorem
    Diagonalizable Operators
    Exercises
  9  Real and Complex Inner Product Spaces
    Norm and Distance
    Isometries
    Orthogonality
    Orthogonal and Orthonormal Sets
    The Projection Theorem and Best Approximations
    The Riesz Representation Theorem
    Exercises
  10  Structure Theory for Normal Operators

    The Adjoint of a Linear Operator
    Orthogonal Projections
    Unitary Diagonalizability
    Normal Operators
    Special Types of Normal Operators
    Self-Adjoint Operators
    Unitary Operators and Isometrics
    The Structure of Normal Operators
    Functional Calculus
    Positive Operators
    The Polar Decomposition of an Operator
    Exercises
Part Ⅱ  Topics
  11  Metric Vector Spaces: The Theory of Bilinear Forms
    Symmetric, Skew-Symmetric and Alternate Forms
    The Matrix ofa Bilinear Form
    Quadratic Forms
    Orthogonality
    Linear Functionals
    Orthogonal Complements and Orthogonal Direct Sums
    Isometries
    Hyperbolic Spaces
    Nonsingular Completions ofa Subspace
    The Witt Theorems: A Preview
    The Classification Problem for Metric Vector Spaces
    Symplectic Geometry
    The Structure of Orthogonal Geometries: Orthogonal Bases
    The Classification of Orthogonal Geometries Canonical Forms
    The Orthogonal Group
    The Witt Theorems for Orthogonal Geometries
    Maximal Hyperbolic Subspaces of an Orthogonal Geometry
    Exercises
  12  Metric Spaces
    The Definition
    Open and Closed Sets
    Convergence in a Metric Space
    The Closure of a Set
    Dense Subsets
    Continuity
    Completeness
    Isometries
    The Completion of a Metric Space
    Exercises
  13  Hilbert Spaces
    A Brief Review
    Hilbert Spaces
    Infinite Series
    An Approximation Problem
    Hilbert Bases
    Fourier Expansions

    A Characterization of Hilbert Bases
    Hilbert Dimension
    A Characterization of Hilbert Spaces
    The Riesz Representation Theorem
    Exercises
  14  Tensor Products
    Universality
    Bilinear Maps
    Tensor Products
    When Is a Tensor.Product Zero?
    Coordinate Matrices and Rank
    Characterizing Vectors in a Tensor Product
    Defining Linear Transformations on a Tensor Product
    The Tensor Product of Linear Transformations
    Change of Base Field
    Multilinear Maps and Iterated Tensor Products
    Tensor Spaces
    Special Multilinear Maps
    Graded Algebras
    The Symmetric and Antisymmetric Tensor Algebras
    The Determinant
    Exercises
  15  Positive Solutions to Linear Systems Convexity and Separation
    Convex, Closed and Compact Sets
    Convex Hulls
    Linear and Affine Hyperplanes
    Separation
    Exercises
  16  Affine Geometry
    Affine Geometry
    Affine Combinations
    Affine Hulls
    The Lattice of Flats
    Affine Independence
    Affine Transformations
    Projective Geometry
    Exercises
  17  Singular Values and the Moore-Penrose Inverse
    Singular Values
    The Moore-Penrose Generalized Inverse
    Least Squares Approximation
    Exercises
  18  An Introduction to Algebras
    Motivation
    Associative Algebras
    Division Algebras
    Exercises
  19  The Umbral Calculus
    Formal Power Series
    The Umbral Algebra

    Formal Power Series as Linear Operators
    Sheffer Sequences
    Examples of Sheffer Sequences
    Umbral Operators and Umbral Shifts
    Continuous Operators on the Umbral Algebra
    Operator Adjoints
    Umbral Operators and Automorphisms of the Umbral Algebra
    Umbral Shifts and Derivations of the Umbral Algebra
    The Transfer Formulas
    A Final Remark
    Exercises
Referenees
Index of Symbols
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032