目錄
Preface
CHAPTER ⅠHomology and Cohomology. Computational Recipes
1. Cohomology groups as classes of closed differential forms.Their homotopy invariance
2. The homology theory of algebraic complexes
3. Simplicial complexes. Their homology and cohomology groups.The classification of the two-dimensional closed surfaces
4. Attaching cells to a topological space. Cell spaces. Theorems on the reduction of cell spaces. Homology groups and the fundamental
groups of surfaces and certain other manifolds
5. The singular homology and cohomology groups. Their homotogy invariance. The exact sequence of a pair. Relative homology groups
6. The singular homology of cell complexes. Its equivalence with cell homology. Poincar duality in simplicial homology
7. The homology groups of a product of spaces. Multiplication in cohomology rings. The cohomology theory of H-spaces and Lie groups. The cohomology of the unitary groups
8. The homology theory of fibre bundles (skew products)
9. The extension problem for maps, homotopies, and cross-sections.Obstruction cohomology classes
9.1. The extension problem for maps
9.2. The extension problem for homotopies
9.3. The extension problem for cross-sections
10. Homology theory and methods for computing homotopy groups.
The Cartan-Serre theorem. Cohomology operations. Vector bundles.
10.1. The concept of a cohomology operation. Examples
10.2. Cohomology operations and Eilenberg-MacLane complexes
10.3. Computation of the rational homotopy groups n Q
10.4. Application to vector bundles. Characteristic classes
10.5. Classification of the Steenrod operations in low dimensions
10.6. Computation of the first few nontri'ial stable homotopy groups of spheres
10.7. Stable homotopy classes of maps of cell complexes
11. Homology theory and the fundamental group
12. The cohomology groups of hyperelliptic Riemann surfaces, Jacobi tori. Geodesics on multi-axis ellipsoids. Relationship to finite-gap
potentials
13. The simplest properties of Kihler manifolds, Abelian tori
14. Sheaf cohomology
CHAPTER 2 Critical Points of Smooth Functions and Homology Theory
15. Morse functions and cell complexes
16. The Morse inequalities
17. Morse-Smale functions. Handles. Surfaces
18. Poincare duality
19. Critical points of smooth functions and the Lyusternik-Shnirelman category of a manifold
20. Critical manifolds and the Morse inequalities. Functions with symmetry
21. Critical points of functionals and the topology of the path space Ω(M)
22, Applications of the index theorem
23, The periodic problem of the calculus of variations
24. Morse functions on 3-dimensional manifolds and Heegaard splittings
25. Unitary Bott periodicity and higher-dimensional variational problems
25.1. The theorem on unitary periodicity
25.2. Unitary periodicity via the two-dimensional calculus of variations
25.3. Onthogonal periodicity via the higher-dimensional calculus of variations
26. Morse theory and certain motions in the planar n-body problem
CHAPTER 3 Cobordisms and Smooth Structures
27. Characteristic numbers. Cobordisms. Cycles and submanifolds,
The signature of a manifold
27.1. Statement of the problem. The simplest facts about eobordisms.The signature
27.2. Thorn complexes. Calculation of cobordisms (modulo torsion).The signature formula, Realization of
27.3. Some applications of the signature formula. The signature and the problem of the invariance of classes
28. Smooth structures on the 7-dimensional sphere. The classification problem for smooth manifolds (normal invariants). Reidemeister torsion
and the fundamental hypothesis (Hauptvermutung) of combinatorial topology
Bibliography
APPENDIX 1 (by S. P. Novikov)
An Analogue of Morse Theory for Many-Valued Functions.
Certain Properties of Poisson Brackets
APPENDIX 2 (by A. T. Fomenko)
Plateau's Problem. Spectral Bordisms and Globally Minimal
Surfaces in Riemannian Manifolds
Index
Errata to Parts I and II