幫助中心 | 我的帳號 | 關於我們

損傷和破壞的統計細觀力學(英文版)(精)

  • 作者:白以龍//夏蒙棼//柯孚久
  • 出版社:科學
  • ISBN:9787030617989
  • 出版日期:2019/01/01
  • 裝幀:精裝
  • 頁數:496
人民幣:RMB 298 元      售價:
放入購物車
加入收藏夾

內容大鋼
    國際科學理事會(ICSU)曾提到,解決微損傷引起的災變問題,可遵循中國古代學者孫子所提出的「謀無術則成事難,術無謀則必敗」思想。破壞過程通常是由微損傷演化的跨尺度級聯所產生的。因此,有必要發展新的跨尺度理論框架來理解材料破壞中的物理現象,理清跨尺度過程中所蘊含的相關機理。本書期望通過結合力學和統計物理來回答以下問題:1.微損傷是如何誘致災變破壞的?2.突變破壞的前兆是什麼?3.是否可以通過前兆信號區分災變和漸近破壞?4.為什麼有的災變行為並沒有明顯的前兆現象?在此基礎上,加深對損傷誘致災變的理解,併為災變預報提供新思路。

作者介紹
白以龍//夏蒙棼//柯孚久

目錄
1 Introduction
  1.1  Damage and Failure of Heterogeneous Media: Basic Features and Common Characteristics
    1.1.1  Basic Features
    1.1.2  Scientific Characteristics
    1.1.3  Demands for Economic Mechanics
  1.2  Framework of Statistical Meso-mechanics: Why and How Statistical Meso-mechanics Is
    1.2.1  Remarks on Multi-scale Approaches
    1.2.2  Why Statistical Meso-mechanics
    1.2.3  How Statistical Meso-mechanics Works
    1.2.4  What the Present Book Deals with
  1.3  Mathematical Essentials in Statistical Meso-mechanics
    1.3.1  Statistical 2D-3D Conversion
    1.3.2  Statistical Differentiation and Correlation of Patterns
    1.3.3  Ensemble Statistics
    1.3.4  Weibull Distribution, Heterogeneity Index, and Its Transfer
2 Quasi-static Evolution of Deformation and Damage in Meso-heterogeneous Media
  2.1  Average and Mean Field Approximation (MF)
    2.1.1  Conventional Averaging
    2.1.2  Mean Field (MF) Method
    2.1.3  Mean Field Approximation and Strain Equivalence
    2.1.4  Coupled Averaging (CA)
    2.1.5  Two PDF Operations Related to Coupled Averaging (CA)
  2.2  Elastic and Statistically Brittle (ESB) Model and Its Distinct Features—Global Mean Field (GMF) Approximation
    2.2.1  Elastic–Brittle Meso-elements and Its Implication
    2.2.2  Elastic and Statistically Brittle (ESB) Model
    2.2.3  Full Formulation of Elastic and Statistically Brittle (ESB) Model
    2.2.4  Energy Variations in ESB Model
    2.2.5  Stable or not Beyond Peak Load in ESB Model
    2.2.6  Experimental Extraction of Constitutive Parameters in ESB Model
  2.3  Continuous Bifurcation and Emergence of Localized Deformation and Damage—Regional Mean Field (RMF) Approximation
    2.3.1  Experimental Observations and Data Processing of Localization
    2.3.2  When Localization Emerges
    2.3.3  Comparison of Experimental and Calculated Results of Localization
    2.3.4  Continuous Bifurcation with Simultaneous Elastic Unloading and Continuing Damage
    2.3.5  Constitutive Relation with Localization Resulting from Continuous Bifurcation
    2.3.6  A Phenomenological Model of Localized Zone c
    2.3.7  Energy Variation with Localization and Critical State of Stable Deformation Under RMF Approximation
    2.3.8  Evolution of Statistical Distribution and How GMF Approximation Fails
  2.4  Size Effect Resulting from Meso-heterogeneity and Its Statistical Understanding
    2.4.1  Weibull Model—The Weakest Link Model
    2.4.2  Ba?ant's Theory on Size Effect
    2.4.3  Size Effect Governed by Elastic Energy Release on Catastrophic Rupture
    2.4.4  Size Effects Resulting from Finite Meso-elements
  2.5  Special Experimental Issues in Stat
    2.6.2  Multi-scale Finite Element Methods
  2.7  Application to Failure Wave Under One-Dimensional Strain Condition—A Moving Front of Expanding Contact Region
    2.7.1  Fundamentals of Failure Wave
    2.7.2  Illustrative Problems—Rigid Projectile Against Rigid but Crushable Sample
    2.7.3  Constitutive Relation Under One-Dimensional Strain State Based on Elastic–Statistically Brittle (ESB) Model
    2.7.4  Failure Wave—A Moving Front of Expanding Contact Region Due to Heterogeneous Meso-scopic Shear Failure
  2.8  Application to Metal Foams
    2.8.1  General Features of Metal Foam
    2.8.2  Phenomenological and Statistical Formulation of Stress–Strain Relation
    2.8.3  Cell Model
    2.8.4  Statistical Formulation of Foam Based on Cell Models
  2.9  Application to Concrete Under Biaxial Compression
    2.9.1  General Features of Concrete Under Biaxial Compression
    2.9.2  ESB Model Under Biaxial Compression and Plane Stress State with GMF Approximation
    2.9.3  Localization, Catastrophic Rupture, and Gradual Failure
3 Time-Dependent Population of Microdamage
  3.1  Background and Methodology
    3.1.1  Effects of Microdamage Evolution
    3.1.2  Methodology
    3.1.3  Definition of Number Density of Microdamage
  3.2  Fundamental Equations of Microdamage Evolution
    3.2.1  Brief Review of the Study on Microdamage Evolution
    3.2.2  General Equation of Microdamage Evolution
    3.2.3  Fundamental Equations in Phase Space of Microdamage Sizes {c, c0
    3.2.4  Some Other Formulations
  3.3  General Solution to Evolution of Microdamage Number Density
    3.3.1  Solution to Evolution of Microdamage Number Density n0(c, c0; r)
    3.3.2  Evolution of Current Microdamage Number Density n(t, c; r)
  3.4  Closed Formulation of Continuum Damage Based on Microdamage Evolution
    3.4.1  Continuum Damage Based on Microdamage Number Density
    3.4.2  Trans-Scale Field Equations Governing Damage Evolution
    3.4.3  Closed One-Dimensional Formulation of Damage Evolution
    3.4.4  Dynamic Function of Damage (DFD) and Its Significance
    3.4.5  Damage Localization
  3.5  Deborah Number and Its Significance in the Evolution of Microdamage
    3.5.1  Deborah Number
    3.5.2  Competition of Macro- and Mesoscopic Time Scales: Trans-scale Deborah Numbers
    3.5.3  Implication of Intrinsic Deborah Number D
  3.6  Spallation—Tensile Failure Resulting from Microdamage Under Stress Waves
    3.6.1  Historical Remarks and Basic Features
    3.6.2  Experimental Study of Mesoscopic Kinetics in Spallation with Sub-microsecond and Multi-stress Pulses Techniques
    3.6.3  Distinct Aspects of Spallation Due to Mesoscopic Kinetics of Microcracks
  3.7  Short Fatigue
4 Critical Catastrophe in Disordered Heterogeneous Brittle Media
  4.1  Evolution Induced Catastrophe (EIC)
    4.1.1  What Evolution Induced Catastrophe (EIC) Is
    4.1.2  Macroscopic Description of Evolution Induced Catastrophe
    4.1.3  Evolution Induced Catastrophe Based on Statistical Driven Nonlinear Threshold Model Under Global Mean Field (GMF) Approximation
    4.1.4  Characteristics of Catastrophic Rupture in Simulations
  4.2  Catastrophic Rupture and Its Relation to Energy Transfer and Damage Localization
    4.2.1  Condition for Catastrophic Rupture in Accord with Energy Transfer Under Global Mean Field (GMF) Approximation
    4.2.2  Margining Catastrophic Rupture Under GMF Approximation
    4.2.3  Size Effect Governed by Elastic Energy Release on Catastrophic Rupture
    4.2.4  Catastrophic Rupture Induced by Localization Under Regional Mean Field (RMF) Approximation
  4.3  Sample-Specificity and Trans-Scale Sensitivity
    4.3.1  Sample-Specificity of Catastrophic Rupture
    4.3.2  Uncertainty Relation in Catastrophe Induced by Damage Localization
    4.3.3  Physical Understanding of Sample-Specificity with Load-Sharing Model
    4.3.4  Trans-Scale Sensitivity
  4.4  Critical Sensitivity and Power Law Singularity of Catastrophe
    4.4.1  Critical Sensitivity and Power Law Singularity Based on ESB Model
    4.4.2  Loading Rate Effect on Critical Sensitivity
    4.4.3  Effect of Discreteness on Critical Sensitivity
  4.5  Great Earthquake—The Catastrophic Rupture in Earth's Crust
    4.5.1  Great Earthquake and Power Law Singularity
    4.5.2  Strain Field Evolution on the Earth's Surface and Its Correlation to Great Earthquake
    4.5.3  Relationship Between Critical Sensitivity and Load–Unload Response Ratio (LURR) Before an Earthquake
    4.5.4  Lower and Upper Bounds of Catastrophe Occurrence and Earthquake Prediction
  4.6  Perspective
Appendices
  A.1  : Nomenclature
  A.2  : Summary of the Book
  A.3  : Statistics—Variation and Correlation
    A.3.1  : Variance and Covariance
    A.3.2  : Correlations
  A.4  : Probability Distribution
    A.4.1  : Probability
    A.4.2  : Single Continuous Random Variable and Related PDF
    A.4.3  : Double Continuous Random Variables, Related PDF and Correlation
  A.5  : Basic Combinatorics
    A.5.1  : Two Fundamental Principles of Counting
    A.5.2  : Basic Permutation and Combination
    A.5.3  : Variations of Permutations and Combinations
    A.5.4  : Stirling's Formula
  A.6  : Weibull Distribution and Weibull Modulus
    A.6.1  : Basic of Weibull Distribution
    A.6.2  : Fitting of Weibull Modulus M of Strength
    A.6.3  : Examples of Weibull Modulus
References
Author Index
  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032