幫助中心 | 我的帳號 | 關於我們

代數拓撲簡明教程(第1卷)(英文版)

  • 作者:(美)喬·彼得·梅
  • 出版社:世界圖書出版公司
  • ISBN:9787519266592
  • 出版日期:2019/09/01
  • 裝幀:平裝
  • 頁數:243
人民幣:RMB 42 元      售價:
放入購物車
加入收藏夾

內容大鋼
    代數拓撲是現代數學的基本部分,這個領域的知識對研究高級的與幾何相關的工作(包括拓撲本身、微分幾何、代數幾何和李群等)來說是必不可少的。本書是一本代數拓撲的簡明教程,書里包含了很多首次在教科書中出現的代數拓撲的最新研究進展。

作者介紹
(美)喬·彼得·梅

目錄
Introduction
Chapter 1  The fundamental group and some of its applications
  1.What is algebraic topology?
  2.The fundamental group
  3.Dependence on the basepoint
  4.Homotopy invariance
  5.Calculations: π1 (R) =0 and π1 (S1) = Z
  6.The Brouwer fixed point theorem
  7.The fundamental theorem of algebra
Chapter 2  Categorical language and the van Kampen theorem
  1.Categories
  2.Functors
  3.Natural transformations
  4.Homotopy categories and homotopy equivalences
  5.The fundamental groupoid
  6.Limits and colimits
  7.The van Kampen theorem
  8.Examples of the van Kanpen theorem
Chapter 3  Covering spaces
  1.The definition of covering spaces
  2.The unique path lifting property
  3.Coverings of groupoids
  4.Group actions and orbit categories
  5.The classification of coverings of groupoids
  6.The construction of coverings of groupoids
  7.The classification of coverings of spaces
  8.The construction of coverings of spaces
Chapter 4  Graphs
  1.The definition of graphs
  2.Edge paths and trees
  3.The homotopy types of graphs
  4.Covers of graphs and Euler characteristics
  5.Applications to groups
Chapter 5  Compactly generated spaces
  1.The definition of compactly generated spaces
  2.The category of compactly generated spaces
Chapter 6  Cofibrations
  1.The definition of cofibrations
  2.Mapping cylinders and cofibrations
  3.Replacing maps by cofibrations
  4.A criterion for a map to be a cofibration
  5.Cofiber homotopy equivalence
Chapter 7  Fibrations
  1.The definition of fibrations
  2.Path lifting functions and fibrations
  3.Replacing maps by fibrations
  4.A criterion for a map to be a fibration
  5.Fiber homotopy equivalence
  6.Change of fiber
Chapter 8  Based cofiber and fiber sequences

  1.Based homotopy classes of maps
  2.Cones, suspensions, paths, loops
  3.Based cofibrations
  4.Cofiber sequences
  5.Based fibrations
  6.Fiber sequences
  7.Connections between cofiber and fiber sequences
Chapter 9  Higher homotopy groups
  1.The definition of homotopy groups
  2.Long exact sequences associated to pairs
  3.Long exact sequences associated to fibrations
  4.A few calculations
  5.Change of basepoint
  6.n-Equivalences, weak equivalences, and a technical lemma
Chapter 10  CW complexes
  1.The definition and some examples of CW complexes
  2.Some constructions on CW complexes
  3.HELP and the Whitehead theorem
  4.The cellular approximation theorem
  5.Approximation of spaces by CW complexes
  6.Approximation of pairs by CW pairs
  7.Approximation of excisive triads by CW triads
Chapter 11  The homotopy excision and suspension theorems
  1.Statement of the homotopy excision theorem
  2.The Freudenthal suspension theorem
  3.Proof of the homotopy excision theorem
Chapter 12  A little homological algebra
  1.Chain complexes
  2.Maps and homotopies of maps of chain complexes
  3.Tensor products of chain complexes
  4.Short and long exact sequences
Chapter 13  Axiomatic and cellular homology theory
  1.Axioms for homology
  2.Cellular homology
  3.Verification of the axioms
  4.The cellular chains of products
  5.Some examples: T, K, and RPn
Chapter 14  Derivations of properties from the axioms
  1.Reduced homology; based versus unbased spaces
  2.Cofibrations and the homology of pairs
  3.Suspension and the long exact sequence of pairs
  4.Axioms for reduced homology
  5.Mayer-Vietoris sequences
  6.The homology of colimits
Chapter 15  The Hurewicz and uniqueness theorems
  1.The Hurewicz theorem
  2.The uniqueness of the homology of CW complexes
Chapter 16  Singular homology theory
  1.The singular chain complex
  2.Geometric realization

  3.Proofs of the theorems
  4.Simplicial objects in algebraic topology
  5.Classifying spaces and K (π, n) s
Chapter 17  Some more homological algebra
  1.Universal coefficients in homology
  2.The Kinneth theorem
  3.Hom functors and universal coefficients in cohomology
  4.Proof of the universal coeficient theorem
  5.Relations between □ and Hom
Chapter 18  Axiomatic and cellular cohomology theory
  1.Axioms for cohomology
  2.Cellular and singular cohomology
  3.Cup products in cohomology
  4.An example: RPn and the Borsuk-Ulam theorem
  5.Obstruction theory
Chapter 19  Derivations of properties from the axioms
  1.Reduced cohomology groups and their properties
  2.Axioms for reduced cohomology
  3.Mayer-Vietoris sequences in cohomology
  4.Liml and the cohomology of colimits
  5.The uniqueness of the cohomology of CW complexes
Chapter 20  The Poincare duality theorem
  1.Statement of the theorem
  2.The definition of the cap product
  3.Orientations and fundamental classes
  4.The proof of the vanishing theorem
  5.The proof of the Poincare duality theorem
  6.The orientation cover
Chapter 21  The index of manifolds; manifolds with boundary
  1.The Euler characteristic of compact manifolds
  2.The index of compact oriented manifolds
  3.Manifolds with boundary
  4.Poincare duality for manifolds with boundary
  5.The index of manifolds that are boundaries
Chapter 22  Homology, cohomology, and K (π, n) s
  1.K (π, n) s and homology
  2.K (π, n) s and cohomology
  3.Cup and cap products
  4.Postnikov systems
  5.Cohomology operations
Chapter 23  Characteristic classes of vector bundles
  1.The classification of vector bundles
  2.Characteristic classes for vector bundles
  3.Stiefel-Whitney classes of manifolds
  4.Characteristic numbers of manifolds
  5.Thom spaces and the Thom isomorphism theorem
  6.The construction of the Stiefel-Whitney classes
  7.Chern,Pontryagin,and Euler classes
  8.A glimpse at the general theory
Chapter 24  An introduction to K-theory

  1.The definition of K-theory
  2.The Bott periodicity theorem
  3.The splitting principle and the Thom isomorphism
  4.The Chern character; almost complex structures on spheres
  5.The Adams operations
  6.The Hopf invariant one problem and its applications
Chapter 25  An introduction to cobordism
  1.The cobordism groups of smooth closed manifolds
  2.Sketch proof that N* is isomorphic to π* (TO)
  3.Prespectra and the algebra H* (TO; Z2)
  4.The Steenrod algebra and its coaction on H* (TO)
  5.The relationship to Stiefel-Whitney numbers
  6.Spectra and the computation of π* (TO)=π* (MO)
  7.An introduction to the stable category
Suggestions for further reading
  1.A classic book and historical references
  2.Textbooks in algebraic topology and homotopy theory
  3.Books on CW complexes
  4.Differential forms and Morse theory
  5.Equivariant algebraic topology
  6.Category theory and homological algebra
  7.Simplicial sets in algebraic topology
  8.The Serre spectral sequence and Serre class theory
  9.The Eilenberg-Moore spectral sequence
  10.Cohomology operations
  11.Vector bundles
  12.Characteristic classes
  13.K-theory
  14.Hopf algebras; the Steenrod algebra, Adams spectral sequence
  15.Cobordism
  16.Generalized homology theory and stable homotopy theory
  17.Quillen model categories
  18.Localization and completion; rational homotopy theory
  19.Infinite loop space theory
  20.Complex cobordism and stable homotopy theory
  21.Follow-ups to this book
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032