幫助中心 | 我的帳號 | 關於我們

樣條函數基本理論(第3版)(英文版)

  • 作者:(美)L.L.舒梅克
  • 出版社:世界圖書出版公司
  • ISBN:9787519253578
  • 出版日期:2019/10/01
  • 裝幀:平裝
  • 頁數:582
人民幣:RMB 109 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是一部全面介紹單變數和張量積樣條函數理論的經典著作,為便於讀者理解,書中呈現了樣條理論在諸多領域的應用,其中包括近似理論,電腦輔助幾何設計,曲線和曲面設計與擬合,圖像處理,微分方程的數值解,強調了該理論在商業和生物科學中的應用也日益廣泛。本書主要面嚮應用分析、數值分析、計算科學和工程領域的研究生和科學工作者,也可作為樣條理論、近似理論和數值分析等應用數學專業課教材或教學參考書。

作者介紹
(美)L.L.舒梅克

目錄
Preface
Preface to the 3rd Edition
Chapter Ⅰ  Introduction
  1.1  Approximation Problems
  1.2  Polynomials
  1.3  Piecewise Polynomials
  1.4  Spline Functions
  1.5  Function Classes and Computers
  1.6  Historical Notes
Chapter 2  Preliminaries
  2.1  Function Classes
  2.2  Taylor Expansions and the Green's Function
  2.3  Matrices and Determinants
  2.4  Sign Changes and Zeros
  2.5  Tchebycheff Systems
  2.6  Weak Tchebycheff Systems
  2.7  Divided Differences
  2.8  Moduli of Smoothness
  2.9  The K-Functional
  2.10  n-Widths
  2.11  Periodic Functions
  2.12  Historical Notes
  2.13  Remarks
Chapter 3  Polynomials
  3.1  Basic Properties
  3.2  Zeros and Determinants
  3.3  Variation-Diminishing Properties
  3.4  Approximation Power of Polynomials
  3.5  Whitney-Type Theorems
  3.6  The Inflexibility of Polynomials
  3.7  Historical Notes
  3.8  Remarks
Chapter 4  Polynomial Splines
  4.1  Basic Properties
  4.2  Construction of a Local Basis
  4.3  B-Splines
  4.4  Equally Spaced Knots
  4.5  The Perfect B-Spline
  4.6  Dual Bases
  4.7  Zero Properties
  4.8  Matrices and Determinants
  4.9  Variation-Diminishing Properties
  4.10  Sign Properties of the Green's Function
  4.11  Historical Notes
  4.12  Remarks
Chapter 5  Computational Methods
  5.1  Storage and Evaluation
  5.2  Derivatives
  5.3  The Piecewise Polynomial Representation
  5.4  Integrals

  5.5  Equally Spaced Knots
  5.6  Historical Notes
  5.7  Remarks
Chapter 6  Approximation Power of Splines
  6.1  Introduction
  6.2  Piecewise Constants
  6.3  Piecewise Linear Functions
  6.4  Direct Theorems
  6.5  Direct Theorems in Intermediate Spaces
  6.6  Lower Bounds
  6.7  n-Widths
  6.8  Inverse Theory for p=∞
  6.9  Inverse Theory for 1?p<∞
  6.10  Historical Notes
  6.11  Remarks
Chapter 7  Approximation Power of Splines (Free Knots)
  7.1  Introduction
  7.2  Piecewise Constants
  7.3  Variational Moduli of Smoothness
  7.4  Direct and Inverse Theorems
  7.5  Saturation
  7.6  Saturation Classes
  7.7  Historical Notes
  7.8  Remarks
Chapter 8  Other Spaces of Polynomial Spllnes
  8.1  Periodic Splines
  8.2  Natural Splines
  8.3  g-Splines
  8.4  Monosplines
  8.5  Discrete Splines
  8.6  Historical Notes
  8.7  Remarks
Chapter 9  Tchebycheffian Splines
  9.1  Extended Complete Tchebycheff Systems
  9.2  A Green's Function
  9.3  Tchebycheffian Spline Functions
  9.4  Tchebycheffian B-Splines
  9.5  Zeros of Tchebycheffian Splines
  9.6  Determinants and Sign Changes
  9.7  Approximation Power of T-Splines
  9.8  Other Spaces of Tchebycheffian Splines
  9.9  Exponential and Hyperbolic Splines
  9.10  Canonical Complete Tchebycheff Systems
  9.11  Discrete Tchebycheffian Splines
  9.12  Historical Notes
Chapter 10  L-Splines
  10.1  Linear Differential Operators
  10.2  A Green's Function
  10.3  L-Splines
  10.4  A Basis of Tchebycheffian B-Splines

  10.5  Approximation Power of L-Splines
  10.6  Lower Bounds
  10.7  Inverse Theorems and Saturation
  10.8  Trigonometric Splines
  10.9  Historical Notes
  10.10  Remarks
Chapter 11  Generalized Splines
  11.1  A General Space of Splines
  11.2  A One-Sided Basis
  11.3  Constructing a Local Basis
  11.4  Sign Changes and Weak Tchebycheff Systems
  11.5  A Nonlinear Space of Generalized Splines
  11.6  Rational Splines
  11.7  Complex and Analytic Splines
  11.8  Historical Notes
Chapter 12  Tensor-Product Splines
  12.1  Tensor-Product Polynomial Splines
  12.2  Tensor-Product B-Splines
  12.3  Approximation Power of Tensor-Product Splines
  12.4  Inverse Theory for Piecewise Polynomials
  12.5  Inverse Theory for Splines
  12.6  Historical Notes
Chapter 13  Some Multidimensional Tools
  13.1  Notation
  13.2  Sobolev Spaces
  13.3  Polynomials
  13.4  Taylor Theorems and the Approximation Power of Polynomials
  13.5  Moduli of Smoothness
  13.6  The K-Functional
  13.7  Historical Notes
  13.8  Remarks
Supplement
References
New References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032