幫助中心 | 我的帳號 | 關於我們

量子系統的非平衡多體理論(英文版)

  • 作者:(意)G.斯蒂芬尼茨//(德)R.馮·萊文
  • 出版社:世界圖書出版公司
  • ISBN:9787519264192
  • 出版日期:2019/09/01
  • 裝幀:平裝
  • 頁數:600
人民幣:RMB 129 元      售價:
放入購物車
加入收藏夾

內容大鋼
    格林函數是解決物理學問題最強大和最通用的方法之一,其中的非平衡態理論對許多研究領域的影響更是不可估量的。本書自成體系,全面論述了非平衡態多體理論。作者從量子力學入手,闡述了平衡態和非平衡態格林函數形式,輪廓格林函數和圖解展開式的物理內涵,介紹了這些理論在從分子、納米結構到金屬和絕緣體等諸多領域的應用。本書適用於物理及相關專業的研究生和科研工作者。

作者介紹
(意)G.斯蒂芬尼茨//(德)R.馮·萊文

目錄
Preface
List of abbreviations and acronyms
Fundamental constants and basic relations
1  Second quantization
    1.1   Quantum mechanics of one particle
    1.2  Quantum mechanics of many particles
    1.3  Quantum mechanics of many identical particles
    1.4   Field operators
    1.5   General basis states
    1.6   Hamiltonian in second quantization
    1.7   Density matrices and quantum averages
2  Getting familiar with second quantization: model Hamiltonians
    2.1   Model Hamiltonians
    2.2  Pariser-Parr-Pople model
    2.3  Noninteracting models
          2.3.1   Bloch theorem and band structure
          2.3.2   Fano model
    2.4  Hubbard model
          2.4.1   Particle-hole symmetry: application to the Hubbard dimer
    2.5  Heisenberg model
    2.6  BCS model and the exact Richardson solution
    2.7  Holstein model
          2.7.1   Peierls instability
          2.7.2   Lang-Firsov transformation: the heavy polaron
3  Time-dependent problems and equations of motion
    3.1   Introduction
    3.2  Evolution operator
    3.3  Equations of motion for operators in the Heisenberg picture
    3.4  Continuity equation: paramagnetic and diamagnetic currents
    3.5  Lorentz Force
4 The contour idea
    4.1   Time-dependent quantum averages
    4.2  Time-dependent ensemble averages
    4.3  Initial equilibrium and adiabatic switching
    4.4  Equations of motion on the contour
    4.5  Operator correlators on the contour
5    Many-particle Green's functions
    5.1   Martin-Schwinger hierarchy
    5.2  Truncation of the hierarchy
    5.3  Exact solution of the hierarchy from Wick's theorem
    5.4  Finite and zero-temperature formalism from the exact solution
    5.5  Langreth rules
6  One-particle Green's function
    6.1   What can we learn from G?
          6.1.1    The inevitable emergence of memory
          6.1.2   Matsubara Green's function and initial preparations
          6.1.3   Lesser/greater Green's function: relaxation and quasi-particles
    6.2  Noninteracting Green's function
          6.2.1   Matsubara component
          6.2.2   Lesser and greater components

          6.2.3   All other components and a useful exercise
    6.3  Interacting Green's function and Lehmann representation
          6.3.1   Steady-states, persistent oscillations, initial-state dependence
          6.3.2   Fluctuation-dissipation theorem and other exact properties
          6.3.3   Spectral function and probability interpretation
          6.3.4   Photoemission experiments and interaction effects
    6.4  Total energy from the Galitskii-Migdal formula
7  Mean field approximations
    7.1   Introduction
    7.2  Hartree approximation
          7.2.1   Hartree equations
          7.2.2   Electron gas
          7.2.3   Quantum discharge of a capacitor
    7.3  Hartree-Fock approximation
          7.3.1   Hartree-Fock equations
          7.3.2   Coulombic electron gas and spin-polarized solutions
8  Conserving approximations: two-particle Green's function
    8.1   Introduction
    8.2  Conditions on the approximate G2
    8.3  Continuity equation
    8.4  Momentumconservation law
    8.5  Angular momentum conservation law
    8.6  Energy conservation law
9  Conserving approximations: self-energy
    9.1   Self-energy and Dyson equations I
    9.2  Conditions on the approximate Σ
    9.3  φ functional
    9.4  Kadanoff-Baym equations
    9.5  Fluctuation-dissipation theorem for the self-energy
    9.6  Recovering equilibrium from the Kadanoff-Baym equations
    9.7  Formal solution of the Kadanoff-Baym equations
10 MBPT for the Green's function
    10.1  Getting started with Feynman diagrams
    10.2  Loop rule
    10.3  Cancellation of disconnected diagrams
    10.4  Summing only the topologically inequivalent diagrams
    10.5  Self-energy and Dyson equations II
    10.6  G-skeleton diagrams
    10.7  W-skeleton diagrams
    10.8  Summary and Feynman rules
11 MBPT and variational principles for the grand potential
    1l.l   Linked cluster theorem
    11.2  Summing only the topologically inequivalent diagrams
    11.3  How to construct the φ functional
    11.4  Dressed expansion of the grand potential
    11.5  Luttinger-Ward and Klein functionals
    11.6  Luttinger-Ward theorem
    11.7  Relation between the reducible polarizability and the ~ functional
  
12 MBPT for the two-particle Green's function
    12.1  Diagrams for G2 and loop rule
    12.2  Bethe-Salpeter equation
    12.3  Excitons
    12.4  Diagrammatic proof of K = ±δΣ/δG
    12.5  Vertex function and Hedin equations
13 Applications of MBPT to equilibrium problems
    13.1  Lifetimes and quasi-particles
    13.2  Fluctuation-dissipation theorem for P and W
    13.3  Correlations in the second-Born approximation
          13.3.1   Polarization effects
    13.4  Ground-state energy and correlation energy
    13.5  GW correlation energy of a Coulombic electron gas
    13.6  T-matrix approximation
          13.6.1   Formation of a Cooper pair
14 Linear response theory: preliminaries
    14.1  Introduction
    14.2  Shortcomings of the linear response theory
          14.2.1   Discrete-discrete coupling
          14.2.2  Discrete-continuum coupling
          14.2.3  Continuum-continuum coupling
    14.3  Fermi golden rule
    14.4  Kubo formula
15 Linear response theory: many-body formulation
    15.1  Current and density response function
    15.2  Lehmann representation
          15.2.1   Analytic structure
          15.2.2  The f-sum rule
          15.2.3  Noninteracting fermions
    15.3  Bethe-Salpeter equation from the variation of a conserving G
    15.4  Ward identity and the f-sum rule
    15.5  Time-dependent screening in an electron gas
           15.5.1   Noninteracting density response function
           15.5.2  RPA density response function
           15.5.3  Sudden creation of a localized hole
           15.5.4  Spectral properties in the GoWo approximation
16 Applications of MBPT to nonequilibrium problems
    16.1  Kadanoff-Baym equations for open systems
    16.2  Time-dependent quantum transport: an exact solution
           16.2.1   Landauer-B?ttiker formula
    16.3  Implementation of the Kadanoff-Baym equations
           16.3.1   Time-stepping technique
           16.3.2  Second-Born and GW self-energies
    16.4  Initial-state and history dependence
    16.5  Charge conservation
    16.6  Time-dependent GW approximation in open systems
           16.6.1
    16.8  Response functions from time-propagation
    Appendices
A From the N roots of ! to the Dirac δ-function
B Graphical approach to permanents and determinants
C Density matrices and probability interpretatio
D Thermodynamics and statistical mechanics
E Green's functions and lattice symmetry
F Asymptotic expansions
G Wick's theorem for general initial states
H BBGKY hierarchy
I From δ-like peaks to continuous spectral functions
J Virial theorem for conserving approximations
K Momentum distribution and sharpness of the Fermi surface
L Hedin equations from a generating functional
M Lippmann-Schwinger equation and cross-section
N Why the name Random Phase Approximation~
O Kramers-Kronig relations
P Algorithm for solving the Kadanoff-Baym equations
References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032