幫助中心 | 我的帳號 | 關於我們

分析方法(修訂版)(英文版)

  • 作者:(美)R.S.斯特里查茲
  • 出版社:世界圖書出版公司
  • ISBN:9787519248659
  • 出版日期:2018/10/01
  • 裝幀:平裝
  • 頁數:739
人民幣:RMB 139 元      售價:
放入購物車
加入收藏夾

內容大鋼
    數學主要講述思想方法的學科,深入理解數學比掌握一大堆的定理、定義、問題和技術顯得更為重要。本書介紹分析方法,結合詳盡、廣泛的闡述,便於讀者深入理解分析內涵和基本方法。

作者介紹
(美)R.S.斯特里查茲

目錄
Preface
1  Preliminaries
  1.1  The Logic cf Quantifiers
    1.1.1  Rules of Quantifiers
    1.1.2  Examples
    1.1.3  Exercises
  1.2  Infinite Sets
    1.2.1  Countable Sets
    1.2.2  Uncountable Sets
    1.2.3  Exexcises
  1.3  Proofs
    1.3.1  How to Discover Proofs
    1.3.2  How to Understand Proofs
  1.4  The Rational Number System
  1.5  The Axiom of Choice*
2  Construction of the Real Number System
  2.1  Cauchy Sequences
    2.1.1  Motivation
    2.1.2  The Definition
    2.1.3  Exercises
  2.2  The Reals as an Ordered Field
    2.2.1  Defining Arithmetic
    2.2.2  The Field Axioms
    2.2.3  Order
    2.2.4  Exercises
  2.3  Limits and Completeness
    2.3.1  Proof of Completeness
    2.3.2  Square Roots
    2.3.3  Exercises
  2.4  Other Versions and Visions
    2.4.1  Infinite Decimal Expansions
    2.4.2  Dedekind Cuts*
    2.4.3  Non-Standard Analysis*
    2.4.4  Constructive Analysis*
    2.4.5  Exercises
  2.5  Summary
3  Topology of the Real Line
  3.1  The Theory of Limits
    3.1.1  Limits, Sups, and Infs
    3.1.2  Limit Points
    3.1.3  Exercises
  3.2  Open Sets and Closed Sets
    3.2.1  Open Sets
    3.2.2  Closed Sets
    3.2.3  Exercises
  3.3  Compact Sets
    3.3.1  Exercises
  3.4  Summary
4  Continuous Functions
  4.1  Concepts of Continuity

    4.1.1  Definitions
    4.1.2  Limits of Functions and Limits of Sequences
    4.1.3  Inverse Images of Open Sets
    4.1.4  Related Definitions
    4.1.5  Exercises
  4.2  Properties of Continuous Functions
    4.2.1  Basic Properties
    4.2.2  Continuous Functions on Compact Domains
    4.2.3  Monotone Functions
    4.2.4  Exercises
  4.3  Summary
5  Differential Calculus
  5.1  Concepts of the Derivative
    5.1.1  Equivalent Definitions
    5.1.2  Continuity and Continuous Differentiability
    5.1.3  Exercises
  5.2  Properties of the Derivative
    5.2.1  Local Properties
  5,2.2  Intermediate Value and Mean Value Theorems
    5.2.3  Global Properties
    5.2.4  Exercises
  5.3  The Calculus of Derivatives
  5.3  ,1  Product and Quotient Rules
    5.3.2  The Chain Rule
    5.3.3  Inverse Function Theorem
    5.3.4  Exercises
  5.4  Higher Derivatives and Taylor's Theorem
    5.4.1  Interpretations of the Second Derivative
    5.4.2  Taylor's Theorem
    5.4.3  L'HSpital's Rule*
    5.4.4  Lagrange Remainder Formula*
    5.4.5  Orders of Zeros*
    5.4.6  Exercises
    5,5  Summary
6  Integral Calculus
  6.1  Integrals of Continuous Functions
    6.1.1  Existence of the Integral
    6.1.2  Fundamental Theorems of Calculus
    6.1.3  Useful Integration Formulas
    6.1.4  Numerical Integration
    6.1.5  Exercises
  6.2  The Riemann Integral
    6.2.1  Definition of the Integral
    6.2.2  Elementary Properties of the Integral
    6.2.3  Functions with a Countable Number of Discontinuities*
    6.2.4  Exercises
  6.3  Improper Integrals*
    6.3.1  Definitions and Examples
    6.3.2  Exercises
  6.4  Summary

7 Sequences and Series of Functions
  7.1  Complex Numbers
    7.1.1  Basic Properties of C
    7.1.2  Complex-Valued Functions
    7.1.3  Exercises
  7.2  Numerical Series and Sequences
    7.2.1  Convergence and Absolute Convergence
    7.2.2  Rearrangements
    7.2.3  Summation by Parts*
    7.2.4  Exercises
  7.3  Uniform Convergence
    7.3.1  Uniform Limits and Continuity
    7.3.2  Integration and Differentiation of Limits
    7.3.3  Unrestricted Convergence*
    7.3.4  Exercises
  7.4  Power Series
    7.4.1  The Radius of Convergence
    7.4.2  Analytic Continuation
    7.4.3  Analytic Functions on Complex Domains*
    7.4.4  Closure Properties of Analytic Functions*
    7.4.5  Exercises
  7.5  Approximation by Polynomials
    7.5.1  Lagrange Interpolation
    7.5.2  Convolutions and Approximate Identities
    7.5.3  The Weierstrass Approximation Theorem
    7.5.4  Approximating Derivatives
    7.5.5  Exercises
  7.6  Equicontinuity
    7.6.1  The Definition of Equicontinuity
    7.6.2  The Arzela-Ascoli Theorem
    7.6.3  Exercises
  7.7  Summary
8  Transcendental Functions
  8.1  The Exponential and Logarithm
    8.1.1  Five Equivalent Definitions
    8.1.2  Exponential Glue and Blip Functions
    8.1.3  Functions with Prescribed Taylor Expansions*
    8.1.4  Exercises
  8.2  Trigonometric Functions
    8.2.1  Definition of Sine and Cosine
    8.2.2  Relationship Between Sines, Cosines, and Com-plex Exponentials
    8.2.3  Exercises
  8.3  Summary
9  Euclidean Space and Metric Spaces
  9.1  Structures on Euclidean Space
    9.1.1  Vector Space and Metric Space
    9.1.2  Norm and Inner Product
    9.1.3  The Complex Case
    9.1.4  Exercises
  9.2  Topology of Metric Spaces

    9.2.1  Open Sets
    9.2.2  Limits and Closed Sets
    9.2.3  Completeness
    9.2.4  Compactness
    9.2.5  Exercises
  9.3  Continuous Functions on Metric Spaces
    9.3.1  Three Equivalent Definitions
    9.3.2  Continuous Functions on Compact Domains
    9.3.3  Connectedness
    9.3.4  The Contractive Mapping Principle
    9.3.5  The Stone-Weierstrass Theorem*
    9.3.6  Nowhere Differentiable Functions, and Worse*
    9.3.7  Exercises
  9.4  Summary
10  Differential Calculus in Euclidean Space
  10.1  The Differential
    10.1.1  Definition of Differentiability
    10.1.2  Partial Derivatives
    10.1.3  The Chain Rule
    10.1.4  Differentiation cf Integrals
    10.1.5  Exercises
  10.2  Higher Derivatives
    10.2.1  Equality cf Mixed Partials
    10.2.2  Local Extrema
    10.2.3  Taylor Expansions
    10.2.4  Exercises
  10.3  Summary
11  Ordinary Differential Equations
  11.1  Existence and Uniqueness
    11.1.1  Motivation
    11.1.2  Picard Iteration
    11.1.3  Linear Equations
    11.1.4  Local Existence and Uniqueness*
  11.1  ,5 Higher Order Equations*
    11.1.6  Exercises
  11.2  Other Methods of Solution*
    11.2.1  Difference Equation Approximation
    11.2.2  Peano Existence Theorem
    11.2.3  Power-Series Solutiovs
  11.2  ,4 Exercises
  11.3  Vector Fields and Flows*
    11.3.1  Integral Curves
    11.3.2  Hamiltonian Mechanics
    11.3.3  First-Order Linear P.D.E.'s
    11.3.4  Exercises
  11.4  Summary
12  Fourier Series
  12.1  Origins of Fourier Series
    12.1.1  Fourier Series Solutions of P.D.E.'s
    12.1.2  Spectral Theory

    12.1.3  Harmonic Analysis
    12.1.4  ExeIcises
  12.2  Convergence of Fourier Series
    12.2.1  Uniform Convergence for Ci Functions
    12.2.2  Summability of Fourier Series
    12.2.3  Convergence in the Mean
    12.2.4  Divergence and Gibb's Phenomenon*
    12.2.5  Solution of the Heat Equation*
    12.2.6  Exercises
  12.3  Summary
13  Implicit Functions, Curves, and Surfaces
  13.1  The Implicit Function Theorem
    13.1.1  Statement of the Theorem
    13.1.2  The Proof*
    13.1.3  Exercises
  13.2  Curves and Surfaces
    13.2.1  Motivation and Examples
    13.2.2  Immersions and Embeddings
    13.2.3  Parametric Description of Surfaces
    13.2.4  Implicit Description of Surfaces
    13.2.5  Exercises
  13.3  Maxima and Minima on Surfaces
    13.3.1  Lagrange Multipliers
    13.3.2  A Second Derivative Test*
    13.3.3  Exercises
  13.4  Arc Length
    13.4.1  Rectifiable Curves
    13.4.2  The Integral Formula for Arc Length
    13.4.3  Arc Length Parameterization*
    13.4.4  Exercises
  13.5  Summary
14  The Lebesgue Integral
  14.1  The Concept of Measure
    14.1.1  Motivation
    14.1.2  Properties of Length
    14.1.3  Measurable Sets
    14.1.4  Basic Properties of Measures
    14.1.5  A Formula for Lebesgue Measure
    14.1.6  Other Examples of Measures
    14.1.7  Exercises
  14.2  Proof of Existence of Measures*
    14.2.1  Outer Measures
    14.2.2  Metric Outer Measure
    14.2.3  Hausdorff Measures*
    14.2.4  Exercises
  14.3  The Integral
    14.3.1  Non-negative Measurable Functions
    14.3.2  The Monotone Convergence Theorem
    14.3.3  Integrable Functions
    14.3.4  Almost Everywhere

    14.3.5  Exercises
  14.4  The Lebesgue Spaces L1 and L2
    14.4.1  L1 as a Banach Space
    14.4.2  L2 as a Hilbert Space
    14.4.3  Fourier Series for L2 Functions
    14.4.4  Exercises
  14.5  Summary
15  Multiple Integrals
  15.1  Interchange of Integrals
    15.1.1  Integrals of Continuous Functions
    15.1.2  Fubini's Theorem
    15.1.3  The Monotone Class Lemma*
    15.1.4  Exercises
  15.2  Change of Variable in Multiple Integrals
    15.2.1  Determinants and Volume
    15.2.2  The Jacobian Factor*
    15.2.3  Polar Coordinates
    15.2.4  Change of Variable for Lebesgue Integrals*
    15.2.5  Exercises
  15.3  Summary
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032