幫助中心 | 我的帳號 | 關於我們

數論(第1卷影印版)(英文版)

  • 作者:(法)H.科恩
  • 出版社:世界圖書出版公司
  • ISBN:9787519255299
  • 出版日期:2019/03/01
  • 裝幀:平裝
  • 頁數:650
人民幣:RMB 179 元      售價:
放入購物車
加入收藏夾

內容大鋼
    《數論》分為2卷,是Springer「數學研究生教材」叢書之239和240卷,是一套面向研究生的數論教程,主旨是全面介紹丟番圖方程的解,包括多項式方程、有理數和代數數論等,其中特彆強調了算術代數幾何的現代理論。全書各章共有530例習題,部分習題有提示。
    本書是其中的第1卷,由H.科恩著。共分2部分8章,內容包括工具、丟番圖方程。

作者介紹
(法)H.科恩

目錄
Volume I
Preface
  1. Introduction to Diophantine Equations
    1.1  Introduction
      1.1.1  Examples of Diophantine Problems
      1.1.2  Local Methods
      1.1.3  Dimensions
    1.2  Exercises for Chapter 1
Part I. Tools
  2. Abelian Groups, Lattices, and Finite Fields
    2.1  Finitely Generated Abelian Groups
      2.1.1  Basic Results
      2.1.2  Description of Subgroups
      2.1.3  Characters of Finite Abelian Groups
      2.1.4  The Groups (Z/mZ)*
      2.1.5  Dirichlet Characters
      2.1.6  Gauss Sums
    2.2  The Quadratic Reciprocity Law
      2.2.1  The Basic Quadratic Reciprocity Law
      2.2.2  Consequences of the Basic Quadratic Reciprocity Law
      2.2.3  Gauss's Lemma and Quadratic Reciprocity
      2.2.4  Real Primitive Characters
      2.2.5  The Sign of the Quadratic Gauss Sum
    2.3  Lattices and the Geometry of Numbers
      2.3.1  Definitions
      2.3.2  Hermite's Inequality
      2.3.3  LLL-Reduced Bases
      2.3.4  The LLL Algorithms
      2.3.5  Approximation of Linear Forms
      2.3.6  Minkowski's Convex Body Theorem
    2.4  Basic Properties of Finite Fields
      2.4.1  General Properties of Finite Fields
      2.4.2  Galois Theory of Finite Fields
      2.4.3  Polynomials over Finite Fields
    2.5  Bounds for the Number of Solutions in Finite Fields
      2.5.1  The Chevalley-Warning Theorem
      2.5.2  Gauss Sums for Finite Fields
      2.5.3  Jacobi Sums for Finite Fields
      2.5.4  The Jacobi Sums J(x1,x2)
      2.5.5  The Number of Solutions of Diagonal Equations
      2.5.6  The Well Bounds
      2.5.7  The Weil Conjectures (Deligne's Theorem)
    2.6  Exercises for Chapter 2
  3. Basic Algebraic Number Theory
    3.1  Field-Theoretic Algebraic Number Theory
      3.1.1  Galois Theory
      3.1.2  Number Fields
      3.1.3  Examples
      3.1.4  Characteristic Polynomial, Norm, Trace
      3.1.5  Noether's Lemma

      3.1.6  The Basic Theorem of Kummer Theory
      3.1.7  Examples of the Use of Kummer Theory
      3.1.8  Artin-Schreier Theory
    3.2  The Normal Basis Theorem
      3.2.1  Linear Independence and Hilbert's Theorem 90
      3.2.2  The Normal Basis Theorem in the Cyclic Case
      3.2.3  Additive Polynomials
      3.2.4  Algebraic Independence of Homomorphisms
      3.2.5  The Normal Basis Theorem
    3.3  Ring-Theoretic Algebraic Number Theory
      3.3.1  Gauss's Lemma on Polynomials
      3.3.2  Algebraic Integers
      3.3.3  Ring of Integers and Discriminant
      3.3.4  Ideals and Units
      3.3.5  Decomposition of Primes and Ramification
      3.3.6  Galois Properties of Prime Decomposition
    3.4  Quadratic Fields
      3.4.1  Field-Theoretic and Basic Ring-Theoretic Properties
      3.4.2  Results and Conjectures on Class and Unit Groups
    3.5  Cyclotomic Fields
      3.5.1  Cyclotomic Polynomials
      3.5.2  Field-Theoretic Properties of Q(Sn)
      3.5.3  Ring-Theoretic Properties
      3.5.4  The Totally Real Subfield of Q(Spk )
    ……
  4. p-adic Fields
  5. Quadratic Forms and Local-Global Principles
Part II. Diophantine Equations
  6. Some Diophantine Equations
  7. Elliptic Curves
  8. Diophantine Aspects of Elliptic Curves
Bibliography
Index of Notation
Index of Names
General Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032