幫助中心 | 我的帳號 | 關於我們

分子振動--代數與非線性方法(英文版)(精)

  • 作者:編者:吳國禎
  • 出版社:科學
  • ISBN:9787030599094
  • 出版日期:2018/01/01
  • 裝幀:精裝
  • 頁數:235
人民幣:RMB 98 元      售價:
放入購物車
加入收藏夾

內容大鋼
    吳國禎著的《分子振動--代數與非線性方法(英文版)(精)》This book highlights the author's works in the past 20 years. The main idea is that molecular highly-excited vibration is a nonlinear, many-body and semiclassical system. Therefore, many ideas and techniques in nonlinear fields such as chaos, resonance, Lyapunov exponent, etc.can find their places in this study. Together with the Lie algebraic coset algorithm, readers are able to approach the topics in a simple arithmetic and realistic way in contrast with the traditional solving of Schrodingeuation.
    These works bridge the gaps between molecular vibration and nonlinear sciences. Readers can understand and find many new characters for molecular highly-excited vibration from a fresh viewpoint of nonlinearity, especially, the chaos.
    Related works of the elementary ideas in this field are first quoted in the first three chapters for the readers to be familiar with. The rest of the chapters offer concrete examples by this approach with flourishing ideas and results about system dynamics which are not known or neglected by the traditional wave function algorithm.

作者介紹
編者:吳國禎

目錄
Preface
1   Pendulum Dynamics
  1.1  Pendulum dynamics
  1.2  Morse oscillator
  1.3  Hamilton's equations of motion
  1.4  Pendulum dynamics as the basic unit for resonance
  1.5  Standard map and KAM theorem
  1.6  Conclusion
  References
2   Algebraic Approach to Vibrational Dynamics
  2.1  The algebraic Hamiltonian
  2.2  Heisenberg's correspondence and coset representation
  2.3  An example: The H20 case
  2.4  su(2) dynamical properties
  Reference
  Appendix: The derivation of raising and lowering operators
3   Chaos
  3.1  Definition and Lyapunov exponent: Tent map
  3.2  Lyapunov exponent in Hamiltonian system
  3.3  Period 3 route to chaos
  3.4  Resonance overlapping and sine circle mapping
  3.5  The case study of DCN
    3.5.1  The chaotic motion
    3.5.2  Periodic trajectories
    3.5.3  Chaotic motion originating from the D-C stretching
  References
  Appendix: Calculation of the maximal Lyapunov exponent
4   C-H Bending Motion of Acetylene
  4.1  Introduction
  4.2  Empirical C-H bending Hamiltonian
  4.3  Second quantization representation of Heft
  4.4  su(2) ○ su(2) represented C-H bending motion
  4.5  Coset representation
  4.6  Modes of C-H bending motion
  4.7  Reduced Hamiltonian of C-H bending motion
  4.8  su(2) origin of precessional mode
  4.9  Nonergodicity of C-H bending motion
  4.10  Intramolecular vibrational relaxation
  References
5   Assignments and Classification of Vibrational Manifolds
  5.1  Formaldehyde case
  5.2  Diabatic correlation, formal quantum number and level reconstruction
  5.3  Acetylene case
  5.4  Background of diabatic correlation
  5.5  Approximately conserved quantum number
  5.6  DCN case
  5.7  Density p in the coset space
  5.8  Lyapunov exponent analysis
  References
6   Dixon Dip

  6.1  Significance of level spacings
  6.2  Dixon dip
  6.3  Dixon dips in the systems of Henon-Heiles and quartic potentials
  6.4  Destruction of Dixon dip under multiple resonances
  6.5  Dixon dip and chaos
  References
7   QuantiT.ation by Lyapunov Exponent and Periodic Trajectories
  7.1  Introduction
  7.2  Hamiltonian for one electron in multiple sites
  7.3  Quantization: The least averaged Lyapunov exponent
  7.4  Quantization of H20 vibration
  7.5  Action integrals of periodic trajectories: The DCN case
  7.6  Retrieval of low quantal levels of DCN
  7.7  Quantization of Henon-Heiles system
  7.8  Quantal correspondence in the classical AKP system
  7.9  A comment
  References
8   Dynamics of DCO/HCO and Dynamical Barrier Due to Extremely Irrational Couplings
  8.1  The coset Hamiltonian of DCO
  8.2  State dynamics of DCO
  8.3  Contrast of the dynamical potentials of D-C and C-O stretchings
  8.4  The HCO case
  8.5  Comparison of the dynamical potentials
  8.6  A comment: The IVR role of bending motion
  8.7  Dynamical barrier due to extremely irrational couplings: The role of bending motion
  References
9  Dynamical Potential Analysis for HCP, DCP, N20, HOC1 and HOBr
  9.1  Introduction
  9.2  The coset represented Hamiltonian of HCP
  9.3  Dynamical potentials and state properties inferred by action population
  9.4  State classification and quantal environments
  9.5  Localized bending mode
  9.6  The condition for localized mode
  9.7  On the HPC formation
  9.8  The fixed point structure
  9.9  DCP Hamiltonian
  9.10  Dynamical similarity between DCP and HCP
  9.11  N20 dynamics
  9.12  The cases of HOC1 and HOBr
  9.13  A comment
  References
  Appendix
10  Chaos in the Transition State Induced by the Bending Motion
  10.1  Chaos in the transition state
  10.2  The cases of HCN, HNC and the transition state
  10.3  Lyapunov exponent analysis
  10.4  Statistical analysis of the level spacing distribution
  10.5  Dixon dip analysis
  10.6  Coupling of pendulum and harmonic oscillator
  10.7  A comment

  References
Appendix: Author's Publications Related to this Monograph

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032