幫助中心 | 我的帳號 | 關於我們

三維流形拓撲學講義(第2版)(英文版)

  • 作者:(美)薩韋列夫
  • 出版社:世界圖書出版公司
  • ISBN:9787519219208
  • 出版日期:2017/01/01
  • 裝幀:平裝
  • 頁數:224
人民幣:RMB 49 元      售價:
放入購物車
加入收藏夾

內容大鋼
    薩韋列夫著的《三維流形拓撲學講義(第2版)(英文版)》主要介紹低維拓撲和Casson理論,當然也不失適時地引入最近研究進展和課題。包括許多經典材料,如Heegaard分裂、Dehn手術、扭結和連接不變數。從Kirby微積分開始,進一步講述Rohlin定理,直到Casson不變數及其應用,並以簡短介紹最新進展作為結束。熟悉基礎代數和微分拓撲,包括基礎群、基本同調理論、橫截性和流形上的龐加萊對偶性的數學和理論物理專業的讀者均可閱讀。

作者介紹
(美)薩韋列夫

目錄
Preface
Introduction
Glossary
1  Heegaard splittings
  1.1  Introduction
  1.2  Existence of Heegaard splittings
  1.3  Stable equivalence of Heegaard splittings
  1.4  The mapping class group
  1.5  Manifolds of Heegaard genus _< I
  1.6  Seifert manifolds
  1.7  Heegaard diagrams
  1.8  Exercises
2  Dehn surgery
  2.1  Knots and links in 3-manifolds
  2.2  Surgery on links in S3
  2.3  Surgery description of lens spaces and Seifert manifolds
  2.4  Surgery and 4-manifolds
  2.5  Exercises
3  Kirby calculus
  3.1  The linking number
  3.2  Kirby moves
  3.3  The linking matrix
  3.4  Reversing orientation
  3.5  Exercises
4  Even surgeries
  4.1  Exercises
5  Review of 4-manifolds
  5.1  Definition of the intersection form
  5.2  The unimodular integral forms
  5.3  Four-manifolds and intersection forms
  5.4  Exercises
6  Four-manifolds with boundary
  6.1  The intersection form
  6.2  Homology spheres via surgery on knots
  6.3  Seifert homology spheres
  6.4  The Rohlin invariant
  6.5  Exercises
7  Invariants of knots and links
  7.1  Seifert surfaces
  7.2  Seifert matrices
  7.3  The Alexander polynomial
  7.4  Other i nvariants from Seifert surfaces
  7.5  Knots in homology spheres
  7.6  Boundary links and the Alexander polynomial
  7.7  Exercises
8  Fibered knots
  8.1  The definition of a fibered knot
  8.2  The monodromy
  8.3  More about torus knots
  8.4  Joins

  8.5  The monodromy of torus knots
  8.6  Open book decompositions
  8.7  Exercises
9  The Arf-invariant
  9.1  The Arf-invariant of a quadratic form
  9.2  The Arf-invariant of a knot
  9.3  Exercises
10 Rohlin's theorem
  10.1 Characteristic surfaces
  10.2 The definition of q
  10.3 Representing homology classes by surfaces
11 The Rohlin invariant
  11.1 Definition of the Rohlin invariant
  11.2 The Rohlin invariant of Seifert spheres
  11.3 A surgery formula for the Rohlin invariant
  11.4 The homology cobordism group
  11.5 Exercises
12 The Casson invariant
  12.1 Exercises
13 The group SU(2)
  13.1 Exercises
14 Representation spaces
  14.1 The topology of representation spaces
  14.2 Irreducible representations
  14.3 Representations of free groups
  14.4 Representations of surface groups
  14.5 Representations for Seifert homology spheres
  14.6 Exercises
15 The local properties of representation spaces
  15.1 Exercises
16 Casson's invariant for Heegaard splittings
  16.1 The intersection product
  16.2 The orientations
  16.3 Independence of l lcega~lvd splitting
  16.4 Exercises
17 Casson's invariant for knots
  17.1 Preferred Heegaard splittings
  17.2 The Casson invariant for knots
  17.3 The difference cycle
  17.4 The Casson invariant for boundary links
  17.5 The Casson invariant of a trefoil
18 An application of the Casson invariant
  18.1 Triangulating 4-manifolds
  18.2 Higher-dimensional manifolds
  18.3 Exercises
19 The Casson invariant of Seifert manifolds
  19.1 The space R(p,q, r)
  19.2 Calculation of the Casson invariant
  19.3 Exercises
Conclusion

Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032