幫助中心 | 我的帳號 | 關於我們

代數曲線拓撲學(英文版)

  • 作者:(土)A.傑格佳廖夫
  • 出版社:世界圖書出版公司
  • ISBN:9787519214739
  • 出版日期:2016/07/01
  • 裝幀:平裝
  • 頁數:393
人民幣:RMB 99 元      售價:
放入購物車
加入收藏夾

內容大鋼
    《代數曲線拓撲學》作者A.傑格佳廖夫,是代數領域的知名學者,該書適用於複雜拓撲理論和代數簇領域的研究生和數學工作者。

作者介紹
(土)A.傑格佳廖夫

目錄
Preface
Ⅰ  Skeletons and dessins
  1  Graphs
  1.1  Graphs and trees
    1.1.1  Graphs
    1.1.2  Trees
    1.1.3  Dynkin diagrams
  1.2 Skeletons
    1.2.1  Ribbon graphs
    1.2.2  Regions
    1.2.3  The fundamental group
    1.2.4  First applications
  1.3 Pseudo-trees
    1.3.1  Admissible trees
    1.3.2  The counts
    1.3.3  The associated lattice
  2  The groups г and в3
  2.1 The modular group г := PSL(2, Z)
    2.1.1  The presentation of г
    2.1.2  Subgroups
  2.2 The braid group в3
    2.2.1  Artin's braid groups вn
    2.2.2  The Burau representation
    2.2.3  The group в3
  3  Trigonai curves and elliptic surfaces
  3.1 Trigonal curves
    3.1.1  Basic definitions and properties
    3.1.2  Singular fibers
    3.1.3  Special geometric structures
  3.2 Elliptic surfaces
    3.2.1  The local theory
    3.2.2  Compact elliptic surfaces
  3.3  Real structures
    3.3.1  Real varieties
    3.3.2  Real trigonal curves and real elliptic surfaces
    3.3.3  Lefschetz fibrations
  Dessins
  4.1  Dessins
    4.1.1  Trichotomic graphs
    4.1.2  Deformations
  4.2 Trigonal curves via dessins
    4.2.1  The correspondence theorems
    4.2.2  Complex curves
    4.2.3  Generic real curves
  4.3 First applications
    4.3.1  Ribbon curves
    4.3.2  Elliptic Lefschetz fibrations revisited
  5  The braid monodromy
  5.1  The Zariski-van Kampen theorem
    5.1.1  The monodromy of a proper n-gonal curve

    5.1.2  The fundamental groups
    5.1.3  Improper curves: slopes
  5.2 The case of trigonal curves
    5.2.1  Monodromy via skeletons
    5.2.2  Slopes
    5.2.3  The strategy
  5.3 Universal curves
    5.3.1  Universal Curves
    5.3.2  The irreducibility criteria
Ⅱ  Applications
  6  The metabelian invariants
  6.1 Dihedral quotients
    6.1.1  Uniform dihedral quotients
    6.1.2  Geometric implications
  6.2 The Alexander module
    6.2.1  Statements
    6.2.2  Proof of Theorem 6.16: the case N ? 7
    6.2.3  Congruence subgroups (the case N ? 5)
    6.2.4  The parabolic case N = 6
  A few simple computations
  7.1 Trigonal curves in ?2
    7.1.1  Proper curves in ?2
    7.1.2  Perturbations of simple singularities
  7.2 Sextics with a non-simple triple point
    7.2.1  A gentle introduction to plane sextics
    7.2.2  Classification and fundamental groups
    7.2.3  A summary of further results
  7.3  Plane quintics
  8  Fundamental groups of plane sextics
  8.1  Statements
    8.1.1  Principal results
    8.1.2  Beginning of the proof
  8.2 A distinguished point of type E
    8.2.1  A point of type E8
    8.2.2  A point of type E7
    8.2.3  A point of type E6
  8.3 A distinguished point of type D
    8.3.1  A point of type Dp, p ? 6
    8.3.2  A point of type D5
    8.3.3  A point of type D4
  9  The transcendental lattice
  9.1  Extremal elliptic surfaces without exceptional fibers
    9.1.1  The tripod calculus
    9.1.2  Proofs and further observations
  9.2 Generalizations and examples
    9.2.1  A computation via the homological invariant
    9.2.2  An example
  10 Monodromy factorizations
    10.1 Hurwitz equivalence
    10.1.1 Statement of the problem

    10.1.2 En-valued factorizations
    10.1.3 Sn-valued factorizations
    10.2 Factorizations in ?
    10.2.1 Exponential examples
    10.2.2 2-factorizations
    10.2.3 The transcendental lattice
    10.2.4 2-factorizations via matrices
    10.3 Geometric applications
    10.3.1 Extremal elliptic surfaces
    10.3.2 Ribbon curves via skeletons
    10.3.3 Maximal Lefschetz fibrations are algebraic
  Appendices
  A  An algebraic complement
  A.1 Integral lattices
  A.1.1  Nikulin's theory of discriminant forms
  A.I.2 Definite lattices
  A.2 Quotient groups
  A.2.1  Zariski quotients
  A.2.2 Auxiliary lemmas
  A.2.3  Alexander module and dihedral quotients
  B  Bigonal curves in ?d
  B. 1 Bigonal curves in ?d
  B.2 Plane quartics, quintics, and sextics
  C  Computer implementations
  C.1 GAP implementations
  C.I.1  Manipulating skeletons in GAP
  C.1.2  Proof of Theorem 6.16
  D  Definitions and notation
  D.1 Common notation
  D.I.1  Groups and group actions
  D.1.2 Topology and homotopy theory
  D.1.3  Algebraic geometry
  D.1.4 Miscellaneous notation
  D.2 Index of notation
Bibliography
Index of figures
Index of tables
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032