幫助中心 | 我的帳號 | 關於我們

線性偏微分運算元分析(第2卷)(英文版)

  • 作者:(瑞典)赫爾曼德爾
  • 出版社:世界圖書出版公司
  • ISBN:9787519209278
  • 出版日期:2016/05/01
  • 裝幀:平裝
  • 頁數:390
人民幣:RMB 65 元      售價:
放入購物車
加入收藏夾

內容大鋼
    赫爾曼德爾著的《線性偏微分運算元分析》介紹:This volume is an expanded version of Chapters Ⅲ, Ⅳ, Ⅴ and Ⅶ of my 1963 book "Linear partial differential operators". In addition there is an entirely new chapter on convolution equations, one on scattering theory, and one on methods from the theory of analytic functions of several complex variables. The latter is somewhat limited in scope though since it seems superfluous to duplicate the monographs by Ehrenpreis and by Palamodov on this subject.

作者介紹
(瑞典)赫爾曼德爾
    赫爾曼德爾Born on January 24,1931, on the souther n coast of Sweden, Lars Hormander did his secondary schooling as well as his under- graduate and doctoral studies in Lund. His principle teacher and adviser at the University of Lund was Marcel Riesz until he returned, then Lars Garding. In 1956 he worked in the USA, at the universities of Chicago, Kansas, Minnesota and New York, before returning to a chair at the University of Stockhohn. He remained a frequent visitor to the US, particularly to Stanford and was Professor at the IAS, Princeton from 1964 to 1968. In 1968 he accepted a chair at the University of Lund, Sweden, where, today he is Emeritus Professor. Hormander's lifetime work has been devoted to the study of partial differential equations and its applications in complex analysis. In 1962 he was awarded the Fields Medal for his contributions to the general theory of linear partial differential operators. His book Linear Partial Differential Operators, published 1963 by Springer in the Grundlehren series, was the first major account of this theory. His four volume text The Analysis of Linear Partial Differential Operators, published in the same series 20 years later, illustrates the vast expansion of the subject in that period.

目錄
Introduction
Chapter Ⅹ. Existence and Approximation of Solutions of
  Differential Equations
  Summary
  10.1. The Spaces Bp.k
  10.2. Fundamental Solutions
  10.3. The Equation P(D) u =f when f
  10.4. Comparison of Differential Operators
  10.5. Approximation of Solutions of Homogeneous
  Differential Equations
  10.6. The Equation P(D)u =f when f is in a Local Space
  10.7. The Equation P(D)u=fwhenf(X)
  10.8. The Geometrical Meaning of the Convexity Conditions
  Notes
Chapter ?. Interior Regularity of Solutions of Differential
  Equations
  Summary
  11.1. Hypoelliptic Operators
  11.2. Partially Hypoelliptic Operators
  11.3. Continuation of Differentiability
  11.4. Estimates for Derivatives of High Order
  Notes
Chapter ?. The Cauchy and Mixed Problems
  Summary
  12.1. The Cauchy Problem for the Wave Equation
  12.2. The Oscillatory Cauchy Problem for the Wave Equation.
  12.3. Necessary Conditions for Existence and Uniqueness
  of Solutions to the Cauchy Problem
  12.4. Properties of Hyperbolic Polynomials
  12.5. The Cauchy Problem for a Hyperbolic Equation
  12.6. The Singularities of the Fundamental Solution
  12.7. A Global Uniqueness Theorem
  12.8. The Characteristic Cauchy Problem
  12.9. Mixed Problems
  Notes
Chapter ?Ⅰ. Differential Operators of Constant Strength
  Summary
  13.1. Definitions and Basic Properties
  13.2. Existence Theorems when the Coefficients are Merely
  Continuous
  13.3. Existence Theorems when the Coefficients are in C
  13.4. Hypoellipticity
  13.5. Global Existence Theorems
  13.6. Non-uniqueness for the Cauchy Problem
  Notes
Chapter ?Ⅴ. Scattering Theory
  Summary
  14.1. Some Function Spaces
  14.2. Division by Functions with Simple Zeros
  14.3. The Resolvent of the Unperturbed Operator

  14.4. Short Range Perturbations
  14.5. The Boundary Values of the Resolvent and the Point
  Spectrum
  14.6. The Distorted Fourier Transforms and the Continuous
  Spectrum
  14.7. Absence of Embedded Eigenvatues
  Notes
Chapter XV. Analytic Function Theory and Differentia/
  Equations
  Summary
  15.1. The Inhomogeneous Cauchy-Riemann Equations
  15.2. The Fourier-Laplace Transform of B(X) when X is
  Convex
  15.3. Fourier-Laplace Representation of Solutions of
  Differential Equations
  15.4. The Fourier-Laplace Transform of C(X) when X is
  Convex
  Notes
Chapter ⅩⅥ. Convolution Equations
  Summary
  16.1. Subharmonic Functions
  16.2. Plurisubharmonic Functions
  16.3. The Support and Singular Support of a Convolution
  16.4. The Approximation Theorem
  16.5. The Inhomogeneous Convolution Equation
  16.6. Hypoelliptic Convolution Equations
  16.7. Hyperbolic Convolution Equations
  Notes
  Appendix A. Some Algebraic Lemmas
  A.1. The Zeros of Analytic Functions
  A.2. Asymptotic Properties of Algebraic Functions of
  Several Variables
  Notes
Bibliography
Index
Index of Notation

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032