Preface 1 Introduction 1.1 Spontaneously broken symmetry 1.2 Tracking broken symmetry: order parameter 1.3 Beyond broken symmetry References 2 Non interacting elearon gas Problems 3 Born—Oppenheimer approximation 3.1 Basic Hamiltonian 3.2 Adiabatic approximation 3.3 Tight—binding approximation Problem References 4 Second quantization 4.1 Bosons 4.2 Fermions 4.3 Fermion operators Problems References 5 Hartree—Fock approximation 5.1 Non—interacting limit 5.2 Hartree—Fock approximation 5.3 Diagrams Problem References 6 Interacting electron gas 6.1 Uniform electron gas 6.2 Hartree—Fock excitation spectrum 6.3 Cohesive energy of metals Summary Problems References 7 Local magnetic moments in metals 7.1 Local moments: phenomenology 7.2 Impurity density ofstates 7.3 Green functions 7.4 Friedel's sum rule and local moments Summary Appendix to Chapter 7: Luttinger's theorem Problems References 8 Quenching of local moments:the Kondo problem 8.1 The Kondo Hamiltonian 8.2 Why is J negative? 8.3 Scattering and the resistivity minimum 8.4 Electron—impurity scattering amplitudes 8.5 Kondo temperature 8.6 Poor Man's scaling Summary
Appendix to Chapter 8: the Schrieffer—Wolff transformation Problems References 9 Screening and plasmons 9.1 Thomas—Fermiscreening 9.2 Plasma oscillations and collective coordinates 9.3 Linear response theory 9.4 Dielectric response function 9.5 Kubo formula: electrical conductivity 9.6 Stopping power of a plasma Summary Problems References 10 Bosonization 10.1 Luttingerliquid 10.2 Bosonization of Luttinger model 10.3 Pair binding: can electrons do it alone? 10.4 Excitation spectrum Summary Problems References 11 Electron—lattice interactions 11.1 Harmonic chain 11.2 Acoustic phonons 11.3 Electron—phonon interaction 11.4 Ultrasonic attenuation 11.5 Electrical conduction Summary Problems References 12 Superconductivity in metals 12.1 Superconductivity:phenomenology 12.2 Electron—phonon effective interaction 12.3 Model interaction 12.4 Cooperpairs 12.5 Fermi liquid theory 12.6 Pair amplitude 12.7 BCS ground state 12.8 Pair fluctuations 12.9 Ground state energy 12.10 Critical magnetic field 12.11 Energygap 12.12 Quasi—particle excitations 12.13 Thermodynamics 12.14 Experimental applications 12.15 Josephson tunneling Summary Problems References 13 Disorder:localization and exceptions
13.1 Primer on localization 13.2 Return probability: localization criterion 13.3 Weak localization 13.4 Scalingtheory 13.5 Exceptions to localization Summary Problems References 14 Quantum phase transitions 14.1 Quantum rotor model 14.2 Scaling 14.3 Mean—field solution 14.4 Landau—Ginsburg theory 14.5 Transport properties 14.6 Experiments 14.7 Scaling and T—linear resistivity Problems References 15 Quantum Halland other topological states 15.1 What is the quantum Hall effect? 15.2 Landaulevels 15.3 The role of disorder 15.4 Currents at the edge 15.5 Topological insulators 15.6 Laughlin liquid Summary Problems References 16 Electronsat strong coupling:Mottness 16.1 Bandinsulator 16.2 Mott's problem 16.3 Much ado about zeros: Luttinger surface 16.4 Beyond the atomic limit: Heisenberg versus Slater 16.5 Dynamical spectral weight transfer 16.6 Epilogue: 1=2—1 Problems References Index