幫助中心 | 我的帳號 | 關於我們

時間序列的理論與方法(第2版)(英文版)

  • 作者:(美)布雷克韋爾
  • 出版社:世界圖書出版公司
  • ISBN:9787510094712
  • 出版日期:2015/05/01
  • 裝幀:平裝
  • 頁數:577
人民幣:RMB 95 元      售價:
放入購物車
加入收藏夾

內容大鋼
    由布雷克韋爾著的《時間序列的理論與方法(第2版)(英文版)》是一部有關時間序列的高等教材,這版對原來的版本通篇做了大量的修訂和擴充,包括增加了全新的一章講述狀態空間。內容詳盡,包括了學習時間序列能夠經常用到的所有方法,書的一開始從引進Hilbert空間開始,緊接著平穩ARMA過程及其他。第10章有關平穩過程的譜推斷很有新意,考慮頻率已知和未知的周期性各種檢驗。

作者介紹
(美)布雷克韋爾

目錄
Preface to the Second Edition
Preface to the First Edition
CHAPTER 1 Stationary Time Series
  1.1 Examples of Time Series
  1.2 Stochastic Processes
  1.3 Stationarity and Strict Stationarity
  1.4 The Estimation and Elimination of Trend and Seasonal Components
  !.5 The Autocovariance Function of a Stationary Process
  1.6 The Multivariate Normal Distribution
  1.7 Applications of Kolmogorov's Theorem Problems
CHAPTER 2 Hilbert Spaces
  2.1 Inner-Product Spaces and Their Properties
  2.2 Hilbert Spaces
  2.3 The Projection Theorem
  2.4 Orthonormal Sets
  2.5 Projection in R
  2.6 Linear Regression and the General Linear Model
  2.7 Mean Square Convergence, Conditional Expectation and Best Linear Prediction in L2(t, P)
  2.8 Fourier Series
  2.9 Hilbert Space Isomorphisms
  2.10* The Completeness of L2 (D, ,, P)
  2.11* Complementary Results for Fourier Series Problems
CHAPTER 3 Stationary ARMA Processes
  3.1 Causal and Invertible ARMA Processes
  3.2 Moving Average Processes of Infinite Order
  3.3 Computing the Autocovariance Function of an ARMA(p, q) Process
  3.4 The Partial Autocgrrelation Function
  3.5 The Autocovariance Generating Function
  3.6* Homogeneous Linear Difference Equations with Constant Coefficients Problems
CHAPTER 4 The Spectral Representation of a Stationary Process
  4.1 Complex-Valued Stationary Time Series
  4.2 The Spectral Distribution of a Linear Combination of Sinusoids
  4.3 Herglotz's Theorem
  4.4 Spectral Densities and ARMA Processes
  4.5* Circulants and Their Eigenvalues
  4.6* Orthogonal Increment Processes on [- n, n]
  4.7* Integration with Respect to an Orthogonal Increment Process
  4.8* The Spectral Representation
  4.9* Inversion Formulae
  4.10* Time-lnvariant Linear Filters
  4.11* Properties of the Fourier Approximation hn to I(v,w) Problems
CHAPTER 5 Prediction of Stationary Processes
  5.1 The Prediction Etuations in the Time Domain
  5.2 Recursive Methols for Computing Best Linear Predictors
  5.3 Recursive Prediction of an ARMA(p, q) Process
  5.4 Prediction of a Stationary Gaussian Process; Prediction Bounds
  5.5 Prediction of a Causal lnvertible ARMA Process in Terms ofXj,-∞   5.6* Prediction in the Frequency Domain
  5.7* The Wold Decomposition
  5.8* Kolmogorov's Formula

   Problems
CHAPTER 6* Asymptotic Theory
  6.1 Convergence in Probability
  6.2 Convergence in r'h Mean, r > 0
  6.3 Convergence in Distribution
  6.4 Central Limit Theorems and Related Results Problems
CHAPTER 7 Estimation of the Mean and the Autocovariance Function
  7.1 Estimation of
  7.2 Estimation ofγ(.) and p(.)
  7.3* Derivation of the Asymptotic Distributions Problems
CHAPTER 8 Estimation for ARMA Models
  8.1 The Yule-Walker Equations and Parameter Estimation for Autoregressive Processes
  8.2 Preliminary Estimation for Autoregressive Processes Using the Durbin-Levinson Algorithm
  8.3 Preliminary Estimation for Moving Average Processes Using the Innovations Algorithm
  8.4 Preliminary Estimation for ARMA(p, q) Processes
  8.5 Remarks on Asymptotic Efficiency
  8.6 Recursive Calculation of the Likelihood of an Arbitrary Zero-Mean Gaussian Process
  8.7 Maximum Likelihood and Least Squares Estimation for ARMA Processes
  8.8 Asymptotic Properties of the Maximum Likelihood Estimators
  8.9 Confidence Intervals for the Parameters of a Causal Invertible ARMA Process
  8.10* Asymptotic Behavior of the Yule-Walker Estimates
  8.11 * Asymptotic Normality of Parameter Estimators Problems
CHAPTER 9 Model Building and Forecasting with ARIMA Processes
  9.1 ARIMA Models for Non-Stationary Time Series
  9.2 Identification Techniques
  9.3 Order Selection
  9.4 Diagnostic Checking
  9.5 Forecasting ARIMA Models
  9.6 Seasonal ARIMA Models Problems
CHAPTER 10 Inference for the Spectrum of a Stationary Process
  10.1 The Periodogram
  10.2 Testing for the Presence of Hidden Periodicities
  10.3 Asymptotic Properties of the Periodogram
  10.4 Smoothing the Periodogram
  10.5 Confidence Intervals for the Spectrum
  10.6 Autoregressive, Maximum Entropy, Moving Average and Maximum Likelihood ARMA Spectral Estimators
  10.7 The Fast Fourier Transform (FFT) Algorithm
  10.8* Derivation of the Asymptotic Behavior of the Maximum Likelihood and Least Squares Estimators of the Coefficients of an ARMA Process Problems
CHAPTER 11 Multivariate Time Series
  11.1 Second Order Properties of Multivariate Time Series
  11.2 Estimation of the Mean and Covariance Function
  11.3 Multivariate ARMA Processes
  11.4 Best Linear Predictors of Second Order Random Vectors
  11.5 Estimation for Multivariate ARMA Processes
  11.6 The Cross Spectrum
  11.7 Estimating the Cross Spectrum
  11.8* The Spectral Representation of a Multivariate Stationary Time Series Problems
CHAPTER 12 State-Space Models and the Kalman Recursions
  12.1 State-Space Models
  12.2 The Kalman Recursions

  12.3 State-Space Models with Missing Observations
  12.4 Controllability and Observability
  12.5 Recursive Bayesian State Estimation Problems
CHAPTER 13 Further Topics
  13.1 Transfer Function Modelling
  13.2 Long Memory Processes
  13.3 Linear Processes with Infinite Variance
  13.4 Threshold Models Problems
Appendix: Data Sets
Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032