幫助中心 | 我的帳號 | 關於我們

原子和量子物理學(第7版)(英文版)

  • 作者:(德)哈肯
  • 出版社:世界圖書出版公司
  • ISBN:9787510084522
  • 出版日期:2015/01/01
  • 裝幀:平裝
  • 頁數:517
人民幣:RMB 139 元      售價:
放入購物車
加入收藏夾

內容大鋼
    由哈肯(H.Haken)等著的《原子和量子物理學(第7版)(英文版)》是一部經典教科書,在全面闡述原子和量子物理的實驗方法和基本理論的同時,也向讀者介紹了該領域的最新動態,如Bell不等式、薛定鄂貓和脫散實驗,以及量子電腦、量子信息和原子激光等。本書不但有173例習題,而且還有這些習題的解,這也是本書的另一個突出特點。
    目次:原子的質量和大小;同位素;原子核;光子;電子;物質波的基本特性;氫原子的波爾模型;量子理論的數學基礎;氫原子的量子力學;強鹼原子光譜中的軌道簡並提升;軌道磁性和自旋磁性;磁場中原子的實驗及其半經典描述;磁場中原子的量子力學分析方法;核自旋和超精細結構;激光;現代光譜方法;量子物理學進展;化學鍵的量子理論基礎。
    讀者對象:物理專業師生及科研人員。

作者介紹
(德)哈肯

目錄
List of the Most Important Symbols Used
1.Introduction
  1.1 Classical Physics and Quantum Mechanics
  1.2 Short Historical Review
2.The Mass and Size of the Atom
  2.1 What is an Atom?
  2.2 Determination of the Mass
  2.3 Methods for Determining Avogadro's Number
  2.3.1 Electrolysis
  2.3.2 The Gas Constant and Boltzmann's Constant
  2.3.3 X—Ray Diffraction in Crystals
  2.3.4 Determination Using Radioactive Decay
  2.4 Determination of the Size of the Atom
  2.4.1 Application of the Kinetic Theory of Gases
  2.4.2 The Interaction Cross Section
  2.4.3 Experimental Determination of Interaction Cross Sections
  2.4.4 Determining the Atomic Size from the Covolume
  2.4.5 Atomic Sizes from X—Ray Diffraction Measurements on Crystals
  2.4.6 Can Individual Atoms Be Seen?
  Problems
3.Isotopes
  3.1 The Periodic System of the Elements
  3.2 Mass Spectroscopy
  3.2.1 Parabola Method
  3.2.2 Improved Mass Spectrometers
  3.2.3 Results of Mass Spectrometry
  3.2.4 Modem Applications of the Mass Spectrometer
  3.2.5 Isotope Separation
  Problems
4.The Nucleus of the Atom
  4.1 Passage of Electrons Through Matter
  4.2 Passage of Alpha Particles Through Matter (Rutherford Scattering)
  4.2.1 Some Properties of Alpha Particles
  4.2.2 Scattering of Alpha Particles by a Foil
  4.2.3 Derivation of the Rutherford Scattering Formula
  4.2.4 Experimental Results
  4.2.5 What is Meant by Nuclear Radius?
  Problems
5.The Photon
  5.1 Wave Character of Light
  5.2 Thermal Radiation
  5.2.1 Spectral Distribution of Black Body Radiation
  5.2.2 Planck's Radiation Formula
  5.2.3 Einstein's Derivation of Planck's Formula
  5.3 The Photoelectric Effect
  5.4 The Compton Effect
  5.4.1 Experiments
  5.4.2 Derivation of the Compton Shift
  Problems
6.The Electron

  6.1 Production of Free Electrons
  6.2 Size of the Electron
  6.3 The Charge of the Electron
  6.4 The Specific Charge elm of the Electron
  6.5 Wave Character of Electrons and Other Particles
  6.6 Interferometry with Atoms
  Problems
7.Some Basic Properties of Matter Waves
  7.1 Wave Packets
  7.2 Probabilistic Interpretation
  7.3 The Heisenberg Uncertainty Relation
  7.4 The Energy—Time Uncertainty Relation
  7.5 Some Consequences of the Uncertainty Relations for Bound States
  Problems
8.Bohr's Model of the Hydrogen Atom
  8.1 Basic Principles of Spectroscopy
  8.2 The Optical Spectrum of the Hydrogen Atom
  8.3 Bohr's Postulates
  8.4 Some Quantitative Conclusions
  8.5 Motion of the Nucleus
  8.6 Spectra of Hydrogen—like Atoms
  8.7 Muonic Atoms
  8.8 Excitation of Quantum Jumps by Collisions
  8.9 Sommerfeld's Extension of the Bohr Model
  and the Experimental Justification of a Second Quantum Number
  8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change
  8.11 Limits of the Bohr—Sommerfeld Theory.The Correspondence Principle
  8.12 Rydberg Atoms
  8.13 Exotic Atoms: Positronium, Muonium, and Antihydrogen
  Problems
9.The Mathematical Framework of Quantum Theory
  9.1 The Particle in a Box
  9.2 The Schrodinger Equation
  9.3 The Conceptual Basis of Quantum Theory
  9.3.1 Observations, Values of Measurements and Operators
  9.3.2 Momentum Measurement and Momentum Probability
  9.3.3 Average Values and Expectation Values
  9.3.4 Operators and Expectation Values
  9.3.5 Equations for Determining the Wavefunction
  9.3.6 Simultaneous Observability and Commutation Relations
  9.4 The Quantum Mechanical Oscillator
  Problems
10.Quantum Mechanics of the Hydrogen Atom
  10.1 Motion in a Central Field
  10.2 Angular Momentum Eigenfunctions
  10.3 The Radial Wavefunctions in a Central Field*
  10.4 The Radial Wavefunctions of Hydrogen
  Problems
11.Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms
  11.1 Shell Structure

  11.2 Screening
  11.3 The Term Diagram
  11.4 Inner Shells
  Problems
12.Orbital and Spin Magnetism.Fine Structure
  12.1 Introduction and Overview
  12.2 Magnetic Moment of the Orbital Motion
  12.3 Precession and Orientation in a Magnetic Field
  12.4 Spin and Magnetic Moment of the Electron
  12.5 Determination of the Gyromagnetic Ratio
  by the Einstein—de Haas Method
  12.6 Detection of Directional Quantisation by Stern and Gerlach
  12.7 Fine Structure and Spin—Orbit Coupling: Overview
  12.8 Calculation of Spin—Orbit Splitting in the Bohr Model
  12.9 Level Scheme of the Alkali Atoms
  12.10 Fine Structure in the Hydrogen Atom
  12.11 The Lamb Shift
  Problems
13.Atoms in a Magnetic Field:
  Experiments and Their Semiclassical Description
  13.1 Directional Quantisation in a Magnetic Field
  13.2 Electron Spin Resonance
  13.3 The Zeeman Effect
  13.3.1 Experiments
  13.3.2 Explanation of the Zeeman Effect from the Standpoint of Classical Electron Theory
  13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model
  13.3.4 The Anomalous Zeeman Effect
  13.3.5 Magnetic Moments with Spin—Orbit Coupling
  13.4 The Paschen—Back Effect
  13.5 Double Resonance and Optical Pumping
  Problems
14.Atoms in a Magnetic Field: Quantum Mechanical Treatment
  14.1 Quantum Theory of the Ordinary Zeeman Effect
  14.2 Quantum Theoretical Treatment of the Electron and Proton Spins
  14.2.1 Spin as Angular Momentum
  14.2.2 Spin Operators, Spin Matrices and Spin Wavefunctions
  14.2.3 The Schrodinger Equation of a Spin in a Magnetic Field
  14.2.4 Description of Spin Precession by Expectation Values
  14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect with Spin—Orbit Coupling*
  14.4 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields, One Constant and One Time Dependent
  14.5 The Bloch Equations
  14.6 The Relativistic Theory of the Electron.The Dirac Equation
  14.7 The Hydrogen Atom in Strong Magnetic Fields*
  14.7.1 Rydberg Atoms in Strong Fields
  14.7.2 What is Chaos? A Reminder of Classical Mechanics
  14.7.3 Quantum Chaos
  14.7.4 The Hydrogen Atom in Strong Magnetic Fields and in Low Quantum States
  Problems
15.Atoms in an Electric Field
  15.1 Observations of the Stark Effect

  15.2 Quantum Theory of the Linear and Quadratic Stark Effects
  15.2.1 The Hamiltonian
  15.2.2 The Quadratic Stark Effect.
  Perturbation Theory Without Degeneracy
  15.2.3 The Linear Stark Effect.
  Perturbation Theory in the Presence of Degeneracy
  15.3 The Interaction of a Two—Level Atom
  with a Coherent Radiation Field
  15.4 Spin and Photon Echoes
  15.5 A Glance at Quantum Electrodynamics
  15.5.1 Field Quantization
  15.5.2 Mass Renormalization and Lamb Shift
  15.6 Atoms in Strong Electric Fields
  Problems
16.General Laws of Optieal Transitions
  16.1 Symmetriesand Selection Rules
  16.1.1 Optical Matrix Elements
  16.1.2 Examples of the Symmetry Behaviour of Wavefunctions
  16.1.3 Selection Rules
  16.1.4 Selection Rules and Multipole Radiation
  16.2 Linewidths and Lineshapes
17.Many—Electron Atoms
  17.1 The Spectrum of the Helium Atom
  17.2 Electron Repulsion and the Pauli Principle
  17.3 Angular Momentum Coupling
  17.3.1 Coupling Mechanism
  17.3.2 LS Coupling (RusseU—Saunders Coupling)
  17.3.3 jj Coupling
  17.4 Magnetic Moments of Many—ElectronAtoms
  17.5 Multiple Excitations
  Problems
18.X—Ray Spectra, Internal Shells
  18.1 Introductory Remarks
  18.2 X—Radiation from Outer Shells
  18.3 X—Ray Bremsstrahlung Spectra
  18.4 Emission Line Spectra: Characteristic Radiation
  18.5 Fine Structure of the X—Ray Spectra
  18.6 Absorption Spectra
  18.7 The Auger Effect
  18.8 Photoelectron Spectroscopy (XPS), ESCA
  Problems
19.Structure of the Periodic System.Ground States of the Elements
  19.1 Periodic System and Shell Structure
  19.2 From the Electron Configuration to the
  Atomic Term Scheme.Atomic Ground States
  19.3 Excited States of Atoms and Possible Electronic Configurations.
  Complete Term Schemes
  19.4 The Many—Electron Problem.Hartree—Fock Method*
  19.4.1 The Two—Electron Problem
  19.4.2 Many Electrons Without Mutual Interactions

  19.4.3 Coulomb Interaction of Electrons.Hartree and Hartree—Fock
  Methods
  Problems
20.Nuclear Spin, Hyperfine Structure
  20.1 Influence of the Atomic Nucleus on Atomic Spectra
  20.2 Spins and Magnetic Moments of Atomic Nuclei
  20.3 The Hyperfine Interaction
  20.4 Hyperfine Structure in the Ground State of the Hydrogen Atom, the Sodium Atom, and the Hydrogen—like Ion 83Bi82+
  20.5 Hyperfine Structure in an External Magnetic Field, Electron Spin Resonance
  20.6 Direct Measurements of Nuclear Spins and Magnetic Moments, Nuclear Magnetic Resonance
  20.7 Applications of Nuclear Magnetic Resonance
  20.8 The Nuclear Electric Quadrupole Moment
  Problems
21.The Laser
  21.1 Some Basic Concepts for the Laser
  21.2 Rate Equations and Lasing Conditions
  21.3 Amplitude and Phase of Laser Light
  Problems
22.Modern Methods of Optical Spectroscopy
  22.1 Classical Methods
  22.2 Quantum Beats
  22.3 Doppler—free Saturation Spectroscopy
  22.4 Doppler—free Two—Photon Absorption
  22.5 Level—Crossing Spectroscopy and the Hanle Effect
  22.6 Laser Cooling of Atoms
  22.7 Nondestructive Single—Photon Detection—
  An Example of Atomic Physics in a Resonant Cavity
  Problems
23.Progress in Quantum Physics:
  A Deeper Understanding and New Applications
  23.1 Introduction
  23.2 The Superposition Principle, Interference, Probabilily and Probability Amplitudes
  23.3 Schrodinger's Cat
  23.4 Decoherence
  23.5 Entanglement
  23.6 The Einstein—Podolsky—Rosen (EPR) Paradox
  23.7 Bell's Inequalities and the Hidden—Variable Hypothesis
  23.8 Experiments to Test Bell's Inequalities
  23.9 Quantum Computers
  23.9.1 Historical Remarks
  23.9.2 Review of Digital Computers
  23.9.3 Basic Concepts of the Quantum Computer
  23.9.4 Decoherence and Error Correction
  23.9.5 A Comparison Between the Quantum Computer
  and the Digital Computer
  23.10 Quantum Information Theory
  23.11 The Bose—Einstein Condensation
  23.11.1 Review of Statistical Mechanics
  23.11.2 The Experimental Discovery
  23.11.3 The Quantum Theory of the Bose—Einstein Condensation

  23.12 The Atom Laser
  Problems
24.Fundamentals of the Quantum Theory of Chemical Bonding
  24.1 Introductory Remarks
  24.2 The Hydrogen—Molecule Ion H+2
  24.3 The Tunnel Effect
  24.4 The Hydrogen Molecule H2
  24.5 Covalent—Ionic Resonance
  24.6 The Hund—Mulliken—Bloch Theory of Bonding in Hydrogen
  24.7 Hybridisation
  24.8 The n Electrons of Benzene, C6H6
  Problems
Appendix
  A. The Dirac Delta Function and the Normalisation of the Wavefunction
  of a Free Particle in Unbounded Space
  B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions
  and its Eigenvalues
  C. Derivation of Heisenberg's Uncertainty Relation
Solutions to the Problems
Bibliography of Supplementary and Specialised Literature
Subject Index
Fundamental Constants of Atomic Physics (Inside Front Cover)
Energy Conversion Table (Inside Back Cover)

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032