幫助中心 | 我的帳號 | 關於我們

割圓域導論(第2版)(英文版)

  • 作者:(美)華盛頓
  • 出版社:世界圖書出版公司
  • ISBN:9787510077852
  • 出版日期:2014/07/01
  • 裝幀:平裝
  • 頁數:487
人民幣:RMB 79 元      售價:
放入購物車
加入收藏夾

內容大鋼
    華盛頓所著的《割圓域導論(第2版)(英文版)》是一部講述數論很重要領域的教程,包括p進數L—函數、類數、割圓單元、費馬最後定理和Z—p擴展Iwasawa定理。這是第二版,新增加了許多內容,如Thaine,Kolyvagin,andRubin的著作、主猜想的證明,以及一章最新其他進展。目次:費曼大定理;基本結果;狄里克萊性質;狄里克萊L級數和類數公式;p進數和伯努利數;Stickelberger定理;p進數L—函數的Iwasawa結構;割圓單元;費曼大定理第二案例;伽羅瓦群作用於理想類群上;類數1的割圓域;測度與分佈。

作者介紹
(美)華盛頓

目錄
Preface to the Second Edition
Preface to the First Edition
CHAPTER I
Fermat's Last Theorem
CHAPTER 2
Basic Results
CHAPTER 3
Dirichlet Characters
CHAPTER 4
Dirichlet L-series and Class Number Formulas
CHAPTER 5
p-adic L-functions and Bernoulli Numbers
5.1.  p-adic functions
5.2.  p-adic L-functions
5.3.  Congruences
5.4.  The value at s = 1
5.5.  The p-adic regulator
5.6.  Applications of the class number formula
CHAPTER 6
Stickelberger's Theorem
6.1.  Gauss sums
6.2.  Stickelberger's theorem
6.3.  Herbrand's theorem
6.4.  The index of the Stickelberger ideal
6.5.  Fermat's Last Theorem
CHAPTER 7
lwasawa's Construction of p-adic L-functions
7.1.  Group rings and power series
7.2.  p-adic L-functions
7.3.  Applications
7.4.  Function fields
7.5.  μ=O
CHAPTER 8
Cyclotomic Units
8.1.  Cyclotomic units
8.2.  Proof of the p-adic class number formula
8.3.  Units of O(Cp) and Vandiver's conjecture
8.4.  p-adic expansions
CHAPTER 9
The Second Case of Fermat's Last Theorem
9.1.  The basic argument
9.2.  The theorems
CHAPTER 10
Galois Groups Acting on Ideal Class Groups
10.1.  Some theorems on class groups
10.2.  Reflection theorems
10.3.  Consequences of Vandiver's conjecture
CHAPTER I 1
Cyclotomic Fields of Class Number One
11.1.  The estimate for even characters

l1.2.  The estimate for all characters
11.3.  The estimate for hm,
11.4.  Odlyzko's bounds on discriminants
11.5.  Calculation of hm+
CHAPTER 12
Measures and Distributions
12.1.  Distributions
12.2.  Measures
12.3.  Universal distributions
CHAPTER 13
Iwasawa's Theory of Zp-extensions
13.1.  Basic facts
13.2.  The structure of A-modules
13.3.  Iwasawa's theorem
13.4.  Consequences
13.5.  The maximal abelian p-extension unramifiexl outside p
13.6.  The main conjecture
13.7.  Logarithmic derivatives
13.8.  Local units modulo cyclotomi~ units
CHAPTER 14
The Kronecker-Weber Theorem
CHAPTER 15
The Main Conjecture and Annihilation of Class Groups
15.1.  Stickelberger's theorem
15.2.  Thaine's theorem
15.3.  The converse of Herbrand's theorem
15.4.  The Main Conjecture
15.5.  Adjoints
15.6.  Technical results from Iwasawa theory
15.7.  Proof of the Main Conjecture
CHAPTER 16
Misccllany
16.1.  Primality testing using Jacobi sums
16.2.  Sinnott's proof thatμ= 0
16.3.  The non-p-part of the class number in a Zp-extension
Appendix
1.  Inverse limits
2.  Infinite Galois theory and ramification theory
3.  Class field theory
Tables
1.  Bernoulli numbers
2.  Irregular primes
3.  Relative class numbers
4.  Real class numbers
Bibliography
List of Symbols
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032