幫助中心 | 我的帳號 | 關於我們

圖像分析中的模型和逆問題(英文版)

  • 作者:(法)查蒙德
  • 出版社:世界圖書出版公司
  • ISBN:9787510070198
  • 出版日期:2014/11/01
  • 裝幀:平裝
  • 頁數:309
人民幣:RMB 59 元      售價:
放入購物車
加入收藏夾

內容大鋼
    查蒙德編著的《圖像分析中的模型和逆問題》內容介紹:This book fulfills a need in the field of computer science research and education. It is not intended for professional mathematicians, but it undoubtedly deals with applied mathematics. Most of the expectations of the topic are fulfilled: precision, exactness, completeness, and excellent references to the original historical works. However, for the sake of read-ability, many demonstrations are omitted. It is not a book on practical image processing, of which so many abound, although all that it teaches is directly concerned with image analysis and image restoration. It is the perfect resource for any advanced scientist concerned with a better un-derstanding of the theoretical models underlying the methods that have efficiently solved numerous issues in robot vision and picture processing.

作者介紹
(法)查蒙德

目錄
Foreword by Henri Maitre
Acknowledgments
List of Figures
Notation and Symbols
1  Introduction
  1.1   About Modeling
    1.1.1  Bayesian Approach
    1.1.2  Inverse Problem
    1.1.3  Energy-Based Formulation
    1.1.4  Models
  1.2   Structure of the Book
  Spline Models
2  Nonparametrie Spline Models
  2.1   Definition
  2.2   Optimization
    2.2.1  Bending Spline
    2.2.2  Spline Under Tension
    2.2.3  Robustness
  2.3   Bayesian Interpretation
  2.4   Choice of Regularization Parameter
  2.5   Approximation Using a Surface
    2.5.1  L-Spline Surface
    2.5.2  Quadratic Energy
    2.5.3  Finite Element Optimization
3  Parametric Spline Models
  3.1   Representation on a Basis of B-Splines
    3.1.1  Approximation Spline
    3.1.2  Construction of B-Splines
  3.2   Extensions
    3.2.1  Multidimensional Case
    3.2.2  Heteroscedasticity
  3.3   High-Dimensional Splines
    3.3.1  Revealing Directions
    3.3.2  Projection Pursuit Regression
4  Auto-Associative Models
  4.1   Analysis of Multidimensional Data
    4.1.1  A Classical Approach
    4.1.2  Toward an Alternative Approach
  4.2   Auto-Associative Composite Models
    4.2.1  Model and Algorithm
    4.2.2  Properties
  4.3   Projection Pursuit and Spline Smoothing
    4.3.1  Projection Index
    4.3.2  Spline Smoothing
  4.4   Illustration
Ⅱ  Markov Models
5  Fundamental Aspects
  5.1   Definitions
    5.1.1  Finite Markov Fields
    5.1.2  Gibbs Fields

  5.2   Markov-Gibbs Equivalence
  5.3   Examples
    5.3.1  Bending Energy
    5.3.2  Bernoulli Energy
    5.3.3  Gaussian Energy
  5.4   Consistency Problem
6  Bayesian Estimation
  6.1   Principle
  6.2   Cost Functions
    6.2.1  Cost b-hnction Examples
    6.2.2  Calculation Problems
7  Simulation and Optimization
  7.1   Simulation
    7.1.1  Homogeneous Markov Chain
    7.1.2  Metropolis Dynamic
    7.1.3  Simulated Gibbs Distribution
  7.2   Stochastic Optimization
  7.3   Probabilistic Aspects
  7.4   Deterministic Optimization
    7.4.1  ICM Algorithm
    7.4.2  Relaxation Algorithms
8  Parameter Estimation
  8.1   Complete Data
    8.1.1  Maximum Likelihood
    8.1.2  Maximum Pseudolikelihood
    8.1.3  Logistic Estimation
  8.2   Incomplete Data
    8.2.1  Maximum Likelihood
    8.2.2  Gibbsian EM Algorithm
    8.2.3  Bayesian Calibration
  Ⅲ  Modeling in Action
9  Model-Building
  9.1   Multiple Spline Approximation
    9.1.1  Choice of Data and Image Characteristics
    9.1.2  Definition of the Hidden Field
    9.1.3  Building an Energy
  9.2   Markov Modeling Methodology
    9.2.1  Details for Implementation
10 Degradation in Imaging
    10.1  Denoising
    10.1.1 Models with Explicit Discontinuities
    10.1.2 Models with Implicit Discontinuities
    10.2  Deblurring
    10.2.1 A Particularly Ill-Posed Problem
    10.2.2 Model with Implicit Discontinuities
    10.3  Scatter
    10.3.1 Direct Problem
    10.3.2 Inverse Problem
  10.4  Sensitivity Functions and Image Fusion
    10.4.1 A Restoration Problem

    10.4.2 Transfer Function Estimation
    10.4.3 Estimation of Stained Transfer Function
11 Detection of Filamentary Entities
  11.1  Valley Detection Principle
    11.1.1 Definitions
    11.1.2 Bayes-Markov Formulation
  11.2  Building the Prior Energy
    11.2.1 Detection Term
    11.2.2 Regularization Term
  11.3  Optimization
  11.4  Extension to the Case of an Image Pair
12 Reconstruction and Projections
  12.1  Projection Model
    12.1.1 Transmission Tomography
    12.1.2 Emission Tomography
  12.2  Regularized Reconstruction
    12.2.1 Regularization with Explicit Discontinuities
   12.2.2 Three-Dimensional Reconstruction
  12.3  Reconstruction with a Single View
    12.3.1 Generalized Cylinder
    12.3.2 Training the Deformations
    12.3.3 Reconstruction in the Presence of Occlusion
13 Matching
  13.1  Template and Hidden Outline
    13.1.1 Rigid Transformations
    13.1.2 Spline Model of a Template
  13.2  Elastic Deformations
    13.2.1 Continuous Random Fields
    13.2.2 Probabilistie Aspects
References
Author Index
Subject Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032