幫助中心 | 我的帳號 | 關於我們

李代數和代數群(英文版)

  • 作者:(法)陶威爾
  • 出版社:世界圖書出版公司
  • ISBN:9787510070228
  • 出版日期:2014/03/01
  • 裝幀:平裝
  • 頁數:653
人民幣:RMB 99 元      售價:
放入購物車
加入收藏夾

內容大鋼
    陶威爾編著的《李代數和代數群》內容介紹:The theory of groups and Lie algebras is interesting for many reasons. In the mathematical viewpoint, it employs at the same time algebra, analysis and geometry. On the other hand, it intervenes in other areas of science, in particular in different branches of physics and chemistry. It is an active domain of current research.
    One of the difficulties that graduate students or mathematicians interested in the theory come across, is the fact that the theory has very much advanced,and consequently, they need to read a vast amount of books and articles before they could tackle interesting problems.

作者介紹
(法)陶威爾

目錄
1  Results on topological spaces
  1.1  Irreducible sets and spaces
  1.2  Dimension
  1.3  Noetherian spaces
  1.4  Constructible sets
  1.5  Gluing topological spaces
2  Rings and modules
  2.1  Ideals
  2.2  Prime and maximal ideals
  2.3  Rings of fractions and localization
  2.4  Localizations of modules
  2.5  Radical of an ideal
  2.6  Local rings
  2.7  Noetherian rings and modules
  2.8  Derivations
  2.9  Module of differentials
3  Integral extensions
  3.1  Integral dependence
  3.2  Integrally closed domains
  3.3  Extensions of prime ideals
4  Factorial rings
  4.1  Generalities
  4.2  Unique factorization
  4.3  Principal ideal domains and Euclidean domains
  4.4  Polynomials and factorial rings
  4.5  Symmetric polynomials
  4.6  Resultant and discriminant
  Field extensions
  5.1  Extensions
  5.2  Algebraic and transcendental elements
  5.3  Algebraic extensions
  5.4  Transcendence basis
  5.5  Norm and trace
  5.6  Theorem of the primitive element
  5.7  Going Down Theorem
  5.8  Fields and derivations
  5.9  Conductor
  Finitely generated algebras
  6.1  Dimension
  6.2  Noether's Normalization Theorem
  6.3  Krull's Principal Ideal Theorem
  6.4  Maximal ideals
  6.5  Zariski topology
7   Gradings and filtrations
  7.1  Graded rings and graded modules
  7.2  Graded submodules
  7.3  Applications
  7.4  Filtrations
  7.5  Grading associated to a filtration
  Inductive limits

  8.1  Generalities
  8.2  Inductive systems of maps
  8.3  Inductive systems of magmas, groups and rings
  8.4  An example
  8.5  Inductive systems of algebras
  Sheaves of functions
  9.1  Sheaves
  9.2  Morphisms
  9.3  Sheaf associated to a presheaf
  9.4  Gluing
   9.5  Ringed space
10 Jordan decomposition and some basic results on groups
   10.1 Jordan decomposition
   10.2 Generalities on groups
   10.3 Commutators
   10.4 Solvable groups
   10.5 Nilpotent groups
  10.6 Group actions
  10.7 Generalities on representations
  10.8 Examples
11 Algebraic sets
  11.1 Affine algebraic sets
  11.2 Zariski topology
  11.3 Regular functions
  11.4 Morphisms
  11.5 Examples of morphisms
  11.6 Abstract algebraic sets
  11.7 Principal open subsets
  11.8 Products of algebraic sets
12 Prevarieties and varieties
  12.1 Structure sheaf
  12.2 Algebraic prevarieties
  12.3 Morphisms of prevarieties
  12.4 Products of prevarieties
  12.5 Algebraic varieties
  12.6 Gluing
  12.7 Rational functions
  12.8 Local rings of a variety
13 Projective varieties
  13.1 Projective spaces
  13.2 Projective spaces and varieties
  13.3 Cones and projective varieties
  13.4 Complete varieties
  13.5 Products
  13.6 Grassmannian variety
14 Dimension
  14.1 Dimension of varieties
  14.2 Dimension and the number of equations .
  14.3 System of parameters
  14.4 Counterexamples

15 Morphisms and dimenion
  15.1 Criterion of affineness
  15.2 AfIine morphisms
  15.3 Finite morphisms
  15.4 Factorization and applications
  15.5 Dimension of fibres of a morphism
  15.6 An example
16 Tangent spaces
  16.1 A first approach
  16.2 Zariski tangent space
  16.3 Differential of a morphism
  16.4 Some lemmas
  16.5 Smooth points
17 Normal varieties
  17.1 Normal varieties
  17.2 Normalization
  17.3 Products of normal varieties
  17.4 Properties of normal varieties
18 Root systems
  18.1 Reflections
  18.2 Root systems
  18.3 Root systems and bilinear forms
  18.4 Passage to the field of real numbers
  18.5 Relations between two roots
  18.6 Examples of root systems
  18.7 Base of a root system
  18.8 Weyl chambers
  18.9 Highest root
  18.10 Closed subsets of roots
  18.11 Weights
  18.12 Graphs
  18.13 Dynkin diagrams
  18.14 Classification of root systems
19 Lie algebras
  19.1 Generalities on Lie algebras
  19.2 Representations
  19.3 Nilpotent Lie algebras
  19.4 Solvable Lie algebras
  19.5 Radical and the largest nilpotent ideal
  19.6 Nilpotent radical
  19.7 Regular linear forms
  19.8 Caftan subalgebras
20 Semisimple and reductive Lie algebras
  20.1 Semisimple Lie algebras
  20.2 Examples
  20.3 Semisimplicity of representations
  20.4 Semisimple and nilpotent elements
  20.5 Reductive Lie algebras
  20.6 Results on the structure of semisimple Lie algebras
  20.7 Subalgebras of semisimple Lie algebras

  20.8 Parabolic subalgebras
21 Algebraic groups
  21.1 Generalities
  21.2 Subgroups and morphisms
  21.3 Connectedness
  21.4 Actions of an algebraic group
  21.5 Modules
  21.6 Group closure
22 Ailine algebraic groups
  22.1 Translations of functions
  22.2 Jordan decomposition
  22.3 Unipotent groups
  22.4 Characters and weights
  22.5 Tori and diagonalizable groups
  22.6 Groups of dimension one
23 Lie algebra of an algebraic group
  23.1 An associative algebra
  23.2 Lie algebras
  23.3 Examples
  23.4 Computing differentials
  23.5 Adjoint representation
  23.6 Jordan decomposition
24 Correspondence between groups and Lie algebras
  24.1 Notations
  24.2 An algebraic subgroup
  24.3 Invariants
  24.4 Functorial properties
  24.5 Algebraic Lie subalgebras
  24.6 A particular case
  24.7 Examples
  24.8 Algebraic adjoint group
25 Homogeneous spaces and quotients
  25.1 Homogeneous spaces
  25.2 Some remarks
  25.3 Geometric quotients
  25.4 Quotient by a subgroup
  25.5 The case of finite groups
26 Solvable groups
  26.1 Conjugacy classes
  26.2 Actions of diagonalizable groups
  26.3 Fixed points
  26.4 Properties of solvable groups
  26.5 Structure of solvable groups
27 Reductive groups
  27.1 Radical and unipotent radical
  27.2 Semisimple and reductive groups
  27.3 Representations
  27.4 Finiteness properties
  27.5 Algebraic quotients
  27.6 Characters

28 Borel subgroups, parabolic subgroups, Cartan subgroups
  28.1 Borel subgroups
  28.2 Theorems of density
  28.3 Centralizers and tori
  28.4 Properties of parabolic subgroups
  28.5 Cartan subgroups
29 Cartan subalgebras, Borel subalgebras and parabolic
  subalgebras
  29.1 Generalities
  29.2 Cartan subalgebras
  29.3 Applications to semisimple Lie algebras
  29.4 Borel subalgebras
  29.5 Properties of parabolic subalgebras
  29.6 More on reductive Lie algebras
  29.7 Other applications
  29.8 Maximal subalgebras
30 Representations of semisimple Lie algebras
   30.1 Enveloping algebra
   30.2 Weights and primitive elements
   30.3 Finite-dimensional modules
   30.4 Verma modules
   30.5 Results on existence and uniqueness
   30.6 A property of the Weyl group
31 Symmetric invariants
   31.1 Invariants of finite groups
   31.2 Invariant polynomial functions
   31.3 A free module
32 S-triples
  32.1 Jacobson-Morosov Theorem
  32.2 Some lemmas
  32.3 Conjugation of S-triples
  32.4 Characteristic
  32.5 Regular and principal elements
33 Polarizations
  33.1 Definition of polarizations
  33.2 Polarizations in the semisimple case
  33.3 A non-polarizable element
  33.4 Polarizable elements
  33.5 Richardson's Theorem
34 Results on orbits
  34.1 Notations
  34.2 Some lemmas
  34.3 Generalities on orbits
  34.4 Minimal nilpotent orbit
  34.5 Subregular nilpotent orbit
  34.6 Dimension of nilpotent orbits
  34.7 Prehomogeneous spaces of parabolic type
35 Centralizers
  35.1 Distinguished elements
  35.2 Distinguished parabolic subalgebras

  35.3 Double centralizers
  35.4 Normalizers
  35.5 A semisimple Lie subalgebra
  35.6 Centralizers and regular elements
36 a-root systems
  36.1 Definition
  36.2 Restricted root systems
  36.3 Restriction of a root
37 Symmetric Lie algebras
  37.1 Primary subspaces
  37.2 Definition of symmetric Lie algebras
  37.3 Natural subalgebras
  37.4 Cartan subspaces
  37.5 The case of reductive Lie algebras
  37.6 Linear forms
38 Semisimple symmetric Lie algebras
  38.1 Notations
  38.2 Iwasawa decomposition
  38.3 Coroots
  38.4 Centralizers
  38.5 S-triples
  38.6 Orbits
  38.7 Symmetric invariants
  38.8 Double centralizers
  38.9 Normalizers
  38.10 Distinguished elements
39 Sheets of Lie algebras
  39.1 Jordan classes
  30.2 Topology of Jordan classes
  39.3 Sheets
  39.4 Dixmier sheets
  39.5 Jordan classes in the symmetric case
  39.6 Sheets in the symmetric case
40 Index and linear forms
  40.1 Stable linear forms
  40.2 Index of a representation
  40.3 Some useful inequalities
  40.4 Index and semi-direct products
  40.5 Heisenberg algebras in semisimple Lie algebras
  40.6 Index of Lie subalgebras of Borel subalgebras
  40.7 Seaweed Lie algebras
   40.8 An upper bound for the index/
   40.9 Cases where the bound is exact
   40.10 On the index of parabolic subalgebras
References
List of notations
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032