幫助中心 | 我的帳號 | 關於我們

物理學家用的數學方法(第7版)(精)

  • 作者:(英)阿夫肯
  • 出版社:世界圖書出版公司
  • ISBN:9787510070754
  • 出版日期:2014/03/01
  • 裝幀:精裝
  • 頁數:1205
人民幣:RMB 249 元      售價:
放入購物車
加入收藏夾

內容大鋼

作者介紹
(英)阿夫肯

目錄
Preface
1 Mathematical  Preliminaries
  1.1  InfiniteSeries
  1.2  Series  ofFunctions
  1.3  Binomial  Theorem
  1.4  Mathematical  Induction
  1.5  Operations  on  Series  Expansions  of  Functions
  1.6  Some  Important  Series
  1.7  Vectors
  1.8  Complex  Numbers  and  Functions
  1.9  Derivatives  andExtrema
  1.10  Evaluation  oflntegrals
  1.1  I  Dirac  Delta  Function
  AdditionaIReadings
2 Determinants  and  Matrices
  2.1  Determinants
  2.2  Matrices
  AdditionaI  Readings
3 Vector  Analysis
  3.1  Review  ofBasic  Properties
  3.2  Vectors  in  3-D  Space  
  3.3  Coordinate  Transformations
  3.4  Rotations  in  IR3
  3.5  Differential  Vector  Operators
  3.6  Differential  Vector  Operators:  Further  Properties
  3.7  Vectorlntegration
  3.8  Integral  Theorems
  3.9  PotentiaITheory
  3.10  Curvilinear  Coordinates
  AdditionaIReadings
4 Tensors  and  Differential  Forms
  4.1  TensorAnalysis
  4.2  Pseudotensors,  Dual  Tensors
  4.3  Tensors  in  General  Coordinates
  4.4  Jacobians
  4.5  DifferentialForms
  4.6  DifferentiatingForms
  4.7  IntegratingForms
  AdditionalReadings
5 Vector Spaces
  5.1  Vectors  in  Function  Spaces
  5.2  Gram-Schmidt  Orthogonalization
  5.3  Operators
  5.4  SelfAdjointOperators
  5.5  Unitaty  Operators
  5.6  Transformations  of  Operators
  5.7  Invariants
  5.8  Summary-Vector  Space  Notation
  AdditionaIReadings
6 Eigenvalue  Problems

  6.1  EigenvalueEquations
  6.2  Matrix  Eigenvalue  Problems
  6.3  Hermitian  Eigenvalue  Problems
  6.4  Hermitian  Matrix  Diagonalization
  6.5  NormaIMatrices
  AdditionalReadings
7 Ordinary  DifTerential  Equations
  7.1  Introduction
  7.2  First-OrderEquations
  7.3  ODEs  with  Constant  Coefficients
  7.4  Second-Order  Linear  ODEs
  7.5  Series  Solutions-Frobenius  '  Method
  7.6  OtherSolutions
  7.7  Inhomogeneous Linear ODEs
  7.8  Nonlinear Differential Equations
  Additional Readings
8 Sturm-Liouville Theory
  8.1  Introduction
  8.2  Hermitian Operators
  8.3  ODE Eigenvalue Problems
  8.4  Variation Method
  8.5  Summary, Eigenvalue Problems
  Additional Readings
9 Partial Differential Equations
  9.1  Introduction
  9.2  First-Order Equations
  9.3  Second-Order Equations
  9.4  Separation of Variables
  9.5  Laplace and Poisson Equations
  9.6  Wave Equation
  9.7  Heat-Flow, or Diffusion PDE
  9.8  Summary
  Additional Readings
10 Green's Functions
  10.1  One-Dimensional Problems
  10.2  Problems in Two and Three Dimensions
  Additional Readings
11 Complex Variable Theory
  11.1  Complex Variables and Functions
  11.2  Cauchy-Riemann Conditions
  11.3  Cauchy' s Integral Theorem
  11.4  Cauchy' s Integral Formula
  11.5  Laurent Expansion
  11.6  Singularities
  11.7  Calculus of Residues
  11.8  Evaluation of Definite Integrals
  11.9  Evaluation of Sums
  11.10 Miscellaneous Topics
  Additional Readings  
12 Further Topics in Analysis

  12.1  Orthogonal Polynomials
  12.2  Bernoulli Numbers
  12.3  Euler-Maclaurin Integration Formula
  12.4  Dirichlet Series
  12.5  Infinite Products
  12.6  Asymptotic Series
  12.7  Method of Steepest Descents
  12.8  Dispersion Relations
  Additional Readings
13 Gamma Function
  13.1  Definitions, Properties
  13.2  Digamma and Polygamma Functions
  13.3  The Beta Function
  13.4  Stirling's Series
  13.5  Riemann Zeta Function
  13.6  Other Related Functions
  Additional Readings
14 Bessel Functions
  14.1  Bessel Functions of the First Kind, ,Iv (x)
  14.2  Orthogonality
  14.3  Neumann Functions, Bessel Functions of the Second Kind
  14.4  Hankel Functions
  14.5  Modified Bessel Functions, Iv (x) and Kv (x)
  14.6  Asymptotic Expansions
  14.7  Spherical Bessel Functions
  Additional Readings
15 Legendre Functions
  15.1  Legendre Polynomials
  15.2  Orthogonality
  15.3  Physical Interpretation of Generating Function
  15.4  Associated Legendre Equation
  15.5  Spherical Harmonics
  15.6  Legendre Functions of the Second Kind
  Additional Readings
16 Angular Momentum
  16.1  Angular Momentum Operators
  16.2  Angular Momentum Coupling
  16.3  Spherical Tensors
  16.4  Vector Spherical Harmonics
  Additional Readings  
17 Group Theory
  17.1  Introduction to Group Theory
  17.2  Representation of Groups
  17.3  Symmetry and Physics
  17.4  Discrete Groups
  17.5  Direct Products
  17.6  Symmetric Group
  17.7  Continuous Groups
  17.8  Lorentz Group
  17.9  Lorentz Covariance of Maxwell's Equations

  17.10 Space Groups
  Additional Readings
18 More Special Functions
  18.1  Hermite Functions
  18.2  Applications of Hermite Functions
  18.3  Laguerre Functions
  18.4  Chebyshev Polynomials
  18.5  Hypergeometric Functions
  18.6  Confluent Hypergeometric Functions
  18.7  Dilogarithm
  18.8  Elliptic Integrals
  Additional Readings
19 Fourier Series
  19.1  General Properties
  19.2  Applications of Fourier Series
  19.3  Gibbs Phenomenon  
  Additional Readings
20 Integral Transforms
  20.1  Introduction
  20.2  Fourier Transform
  20.3  Properties of Fourier Transforms
  20.4  Fourier Convolution Theorem
  20.5  Signal-Processing Applications
  20.6  Discrete Fourier Transform
  20.7  Laplace Transforms
  20.8  Properties of Laplace Transforms
  20.9  Laplace Convolution Theorem
  20.10 Inverse Laplace Transform
  Additional Readings
21 Integral Equations
  21.1  Introduction
  21.2  Some Special Methods
  21.3  Neumann Series
  21.4  Hilbert-Schmidt Theory
  Additional Readings
  17.4  Discrete Groups
  17.5  Direct Products
  17.6  Symmetric Group
  17.7  Continuous Groups
  17.8  Lorentz Group
  17.9  Lorentz Covariance of Maxwell's Equations
  17.10 Space Groups
  Additional Readings
18 More Special Functions
  18.1  Hermite Functions
  18.2  Applications of Hermite Functions
  18.3  Laguerre Functions
  18.4  Chebyshev Polynomials
  18.5  Hypergeometric Functions
  18.6  Confluent Hypergeometric Functions

  18.7  Dilogarithm
  18.8  Elliptic Integrals
  Additional Readings
19 Fourier Series
  19.1  General Properties
  19.2  Applications of Fourier Series
  19.3  Gibbs Phenomenon  
  Additional Readings
20 Integral Transforms
  20.1  Introduction
  20.2  Fourier Transform
  20.3  Properties of Fourier Transforms
  20.4  Fourier Convolution Theorem
  20.5  Signal-Processing Applications
  20.6  Discrete Fourier Transform
  20.7  Laplace Transforms
  20.8  Properties of Laplace Transforms
  20.9  Laplace Convolution Theorem
  20.10 Inverse Laplace Transform
  Additional Readings
21 Integral Equations
  21.1  Introduction
  21.2  Some Special Methods
  21.3  Neumann Series
  21.4  Hilbert-Schmidt Theory
  Additional Readings
22 Calculus of Variations
  22.1  Euler Equation
  22.2  More General Variations
  22.3  Constrained Minima/Maxima
  22.4  Variation with Constraints  
  Additional Readings
23 Probability and Statistics
  23.1  Probability: Definitions, Simple Properties
  23.2  Random Variables
  23.3  Binomial Distribution
  23.4  Poisson Distribution
  23.5  Gauss' Normal Distribution
  23.6  Transformations of Random Variables  
  23.7  Statistics
  Additional Readings
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032