幫助中心 | 我的帳號 | 關於我們

偏微分方程(第1卷第2版)

  • 作者:(美)泰勒
  • 出版社:世界圖書出版公司
  • ISBN:9787510068133
  • 出版日期:2014/01/01
  • 裝幀:平裝
  • 頁數:654
人民幣:RMB 99 元      售價:
放入購物車
加入收藏夾

內容大鋼

作者介紹
(美)泰勒

目錄
Contents of Volumes II and III
Preface
1 Basic Theory of ODE and Vector Fields
  1 The derivative
  2 Fundamental local existence theorem for ODE
  3 Inverse function and implicit function theorems
  4 Constant-coefficientlinear systems; exponentiation of matrices
  5 Variable-coefficientlinear systems of ODE: Duhamels principle
  6 Dependence of solutions on initial data and on other parameters
  7 Flows and vector fields
  8 Lie brackets
  9 Commuting flows; Frobeniuss theorem
  10 Hamiltoniansystems
  11 Geodesics
  12 Variational problems and the stationary action principle
  13 Differential forms N
  14 The symplectic form and canonical transformations
  15 First-order scalar nonlinear PDE
  16 Completely integrable hamiltonian systems
  17 Examples of integrable systems; central force problems
  18 Relativistic motion
  19 Topological applications of differential forms
  20 Critical points and index of a vector field
  A Nonsmooth vector fields
  References
2 The Laplace Equation and Wave Equation
  1 Vibrating strings and membranes
  2 The divergence of a vector field
  3The covariant derivative and divergence of tensor fields
  4 The Laplace operator on a Riemannian manifold
  5 The wave equation on a product manifold and energy conservation
  6 Uniqueness and finite propagation speed
  7 Lorentz manifolds and stress-energy tensors
  8 More general hyperbolic equations; energy estimates
  9 The symbol of a differential operator and a general Green-Stokes formula
  10 The Hodge Laplacian on k-forms
  11 Maxwells equations
  References
3 FourierAnalysisDistributions and Constant-Coefficient Linear PDE
  1 Fourier series
  2 Harmonic functions and holomorphic functions in the plane
  3 The Fourier transform
  4 Distributions and tempered distributions
  5 The classical evolution equations
  6 Radial distributions polar coordinates and Bessel functions
  7 The method ofimages and Poissons summation formula
  8 Homogeneous distributions and principal value distributions
  9 Elliptic operators
  10 Local solvability ofconstant-coefficientPDE
  11 The discrete Fourier transform

  12 The fast Fourier transform
  A The mighty Gaussian and the sublime gamma function
  References
4 SobolevSpaces
  1 Sobolev spaces on Rn
  2 The complex interpolation method
  3 Sobolev spaces on compact manifolds
  4 Sobolev spaces on bounded domains
  5 The Sobolev spaces H50(Ω)
  6 The Schwartzkerneltheorem
  7 Sobolev spaces on rough domains
  References
5 Linear Elliptic Equations
  1 Existence and regularity of solutions to the Dirichlet problem
  2 The weak and strong maximum principles
  3 The Dirichlet problem on the ba
  4 The Riemann mapping theorem (smooth boundary)
  5 The Dirichlet problem on a domain with a rough boundary
  6 The Riemann mapping theorem (rough boundary)
  7 The Neumann boundary problem
  8 The Hodge decomposition and harmonic forms
  9 Natural boundary problems for the Hodge Laplacian
  10 Isothermal coordinates and conformal structures on surfaces
  11 General elliptic boundary problems
  12 Operator properties ofregular boundary problems
  A Spaces of generalized functions on manifolds with boundary
  B The Mayer-Vietoris sequ6nce in deRham cohomology
  References
6 Linear Evolution Equations
  1 The heat equation and the wave equation on bounded domains
  2 The heat equation and wave equation on unbounded domains
  3 Maxwell's equations
  4 TheCauchy-Kowalewsky theorem
  5 Hyperbolic systems
  6 Geometrical optics
  7 The formation of caustics
  8 Boundary layer phenomena for the heat semigroup
  A Some Banach spaces of harmonic functions
  B The stationary phase method
  References
A Outline of Functional Analysis
  1 Banach spaces
  2 Hilbert spaces
  3 Fr6chet spaces; locally convex spaces
  4 Duality
  5 Linear operators
  6 Compact operators
  7 Fredholm operators
  8 Unbounded operators
  9 Semigroups

  References
B Manifolds, Vector Bundles, and Lie Groups
  1 Metric spaces and topological spaces
  2 Manifolds
  3 Vector bundles
  4 Sard's theorem
  5 Lie groups
  6 The Campbell-Hausdorffformula
  7 Representations of Lie groups and Lie algebras
  8 Representations of compact Lie groups
  9 Representations of SU(2) and related groups
  References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032