幫助中心 | 我的帳號 | 關於我們

數論基礎

  • 作者:(美)史迪威
  • 出版社:世界圖書出版公司
  • ISBN:9787510004674
  • 出版日期:2009/05/01
  • 裝幀:平裝
  • 頁數:254
人民幣:RMB 35 元      售價:
放入購物車
加入收藏夾

內容大鋼

作者介紹
(美)史迪威

目錄
Preface
1 Natural numbers and integers
  1.1 Natural numbers
  1.2 Induction
  1.3 Integers
  1.4 Division with remainder
  1.5 Binary notation
  1.6 Diophantine equations
  1.7 TheDiophantus chord method
  1.8 Gaussian integers
  1.9 Discussion
2 The Euclidean algorithm
  2.1 The gcd by subtraction
  2.2 The gcd by division with remainder
  2.3 Linear representation of the gcd
  2.4 Primes and factorization
  2.5 Consequences of unique prime factorization
  2.6 Linear Diophantine equations
  2.7 The vector Euclidean algorithm
  2.8 The map of relatively prime pairs
  2.9 Discussion
3 Congruence arithmetic
  3.1 Congruence mod n
  3.2 Congruence classes and their arithmetic
  3.3 Inverses modp
3.4 Fermat's little theorem
  3.5 Congruence theorems of Wilson and Lagrange
  3.6 Inverses mod k
  3.7 Quadratic Diophantine equations
  3.8 Primitive roots
  3.9 Existence of primitive roots
  3.10 Discussion
4 The RSA eryptosystem
  4.1 Trapdoor functions
  4.2 Ingredients of RSA
  4.3 Exponentiation mod n
  4.4 RSA encryption and decryption
  4.5 Digital signatures
  4.6 Other computational issues
  4.7 Discussion
5 The Pell equation
  5.1 Side and diagonal numbers
  5.2 The equation x2-2y2 = 1
  5.3 The group of solutions
  5.4 The general Pell equation and Z[n]
  5.5 The pigeonhole argument
  5.6 Quadratic forms
  5.7 The map of primitive vectors
  5.8 Periodicity in the map ofx2 -ny2
  5.9 Discussion

6 The Gaussian integers
  6.1 Zand its norm
  6.2 Divisibility and primes in Zand Z
  6.3 Conjugates
  6.4 Division in Z[i]
  6.5 Fermat's two square theorem
  6.6 Pythagorean triples
  6.7 Primes of the form 4n+1
  6.8 Discussion
7  Quadratic integers
  7.1 The equation y3=x2+2
  7.2 The division property in Z[-2]
  7.3 The gcd in Z[-2]
  7.4 Z[-3] and Z[ζ3]
  7.5 Rational solutions of x3+y3=z3+w3
  7.6 The prime -3 in Z[ζ3]
  7.7 Fermat's last theorem for n=3
  7.8 Discussion
8  The four square theorem
  8.1 Real matrices and C
  8.2 Complex matrices and H
  8.3 The quaternion units
  8.4 Z[i,j,k]
  8.5 The Hurwitz integers
  8.6 Conjugates
  8.7 A prime divisor property
  8.8 Proof of the four square theorem
  8.9 Discussion
9  Quadratic reciprocity
  9.1 Primes x2+y2, x2+2y2, and x2+3y2
  9.2 Statement of quadratic reciprocity
  9.3 Euler's criterion
  9.4 The value of (2/q)
  9.5 The story so far
  9.6 The Chinese remainder theorem
  9.7 The full Chinese remainder theorem
  9.8 Proof of quadratic reciprocity
  9.9 Discussion
10 Rings
  10.1 The ring axioms
  10.2 Rings and fields
  10.3 Algebraic integers
  10.4 Quadratic fields and their integers
  10.5 Norm and units of quadratic fields
  10.6 Discussion
11 Ideals
  11.1 Ideals and the gcd
  11.2 Ideals and divisibility in Z
  11.3 Principal ideal domains
  11.4 A nonprincipal ideal of Z[-3]

  11.5 A nonprincipal ideal of Z[-5]
  11.6 Ideals of imaginary quadratic fields as lattices
  11.7 Products and prime ideals
  11.8 Ideal prime factorization
  11.9 Discussion
12 Prime ideals
  12.1 Ideals and congruence
  12.2 Prime and maximal ideals
  12.3 Prime ideals of imaginary quadratic fields
  12.4 Conjugate ideals
  12.5 Divisibility and containment
  12.6 Factorization of ideals
  12.7 Ideal classes
  12.8 Primes of the form X2+5y2
  12.9 Discussion
Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032