幫助中心 | 我的帳號 | 關於我們

構建機器學習應用(影印版)(英文版)

  • 作者:(法)伊曼紐爾·阿米森|責編:張燁
  • 出版社:東南大學
  • ISBN:9787564189518
  • 出版日期:2020/08/01
  • 裝幀:平裝
  • 頁數:238
人民幣:RMB 89 元      售價:
放入購物車
加入收藏夾

內容大鋼
    學習設計、構建和部署機器學習(ML)應用所需的技能。通過這本實用的教程,你將構建一個機器學習驅動的示例應用程序,將最初的想法轉化成可部署的產品。數據科學家、軟體工程師和產品經理一一無論經驗豐富的的專家還是剛剛入門的新手一一都可以循序漸進地學習構建實際的機器學習應用程序所涉及的工具、最佳實踐和技術挑戰。
    作者Emmanuel Ameisen是一名經驗豐富的數據科學家,他領導著一個人工智慧教育項目群,通過代碼片段、插圖和屏幕截圖以及對行業領袖的採訪內容展示實用的機器學習概念。本書第一部分教授如何設計一個機器學習應用程序並評估效果;第二部分介紹如何構建一個可用的機器學習模型;第三部分演示改進模型的方法,讓模型滿足你最初的設想;第四部分介紹應用部署和監測策略。
    這本書將幫助你:
    定義產品目標,確立一個機器學習問題;
    快速構建一個端到端機器學習流水線並獲取一個初始數據集;
    培訓和評估機器學習模型並解決性能瓶頸;
    在生產環境中部署和監測模型。

作者介紹
(法)伊曼紐爾·阿米森|責編:張燁
    伊曼紐爾·阿米森是Stripe公司的機器學習工程師,曾經為Local Motion和Zipcar公司實施並部署了預測分析和機器學習解決方案。最近,他正在領導洞見數據科學(Insight Data Scierice)的人工智慧項目群,指導著150多個機器學習項目。Emmanuel擁有法國三所頂尖大學的人工智慧、電腦工程和管理碩士學位。

目錄
Preface
Part I. Find the Correct ML Approach
  1. From Product Goal to ML Framing
    Estimate What Is Possible
      Models
      Data
    Framing the ML Editor
      Trying to Do It All with ML: An End-to-End Framework
      The Simplest Approach: Being the Algorithm
      Middle Ground: Learning from Our Experience
    Monica Rogati: How to Choose and Prioritize ML Projects
    Conclusion
  2. Createa Plan
    Measuring Success
      Business Performance
      Model Performance
      Freshness and Distribution Shift
      Speed
    Estimate Scope and Challenges
      Leverage Domain Expertise
      Stand on the Shoulders of Giants
    ML Editor Planning
      Initial Plan for an Editor
      Always Start with a Simple Model
    To Make Regular Progress: Start Simple
      Start with a Simple Pipeline
      Pipeline for the ML Editor
    Conclusion
Part II. Build a Working Pipeline
  3. Build Your First End-to-End Pipeline
    The Simplest Scaffolding
    Prototype of an ML Editor
      Parse and Clean Data
      Tokenizing Text
      Generating Features
    Test Your Workflow
      User Experience
      Modeling Results
    ML Editor Prototype Evaluation
      Model
      User Experience
    Conclusion
  4. Acquire an Initial Dataset
    Iterate on Datasets
      Do Data Science
    Explore Your First Dataset
      Be Efficient, Start Small
      Insights Versus Products
      A Data Quality Rubric
    Label to Find Data Trends

      Summary Statistics
      Explore and Label Efficiently
      Be the Algorithm
      Data Trends
    Let Data Inform Features and Models
      Build Features Out of Patterns
      ML Editor Features
    Robert Munro: How Do You Find, Label, and Leverage Data?
    Conclusion
Part III. Iterate on Models
  5. Train and Evaluate Your Model
    The Simplest Appropriate Model
      Simple Models
      From Patterns to Models
      Split Your Dataset
      ML Editor Data Split
      Judge Performance
    Evaluate Your Model: Look Beyond Accuracy
      Contrast Data and Predictions
      Confusion Matrix
      ROC Curve
      Calibration Curve
      Dimensionality Reduction for Errors
      The Top-k Method
      Other Models
    Evaluate Feature Importancek
      Directly from a Classifier
      Black-Box Explainers
    Conclusion
  6. Debug Your ML Problems
    Software Best Practices
      ML-Specific Best Practices
    Debug Wiring: Visualizing and Testing
      Start with One Example
      Test Your ML Code
    Debug Training: Make Your Model Learn
      Task Difficulty
      Optimization Problems
    Debug Generalization: Make Your Model Useful
      Data Leakage
      Overfitting
      Consider the Task at Hand
    Conclusion
  7. Using Classifiers for Writing Recommendations
    Extracting Recommendations from Models
      What Can We Achieve Without a Model?
      Extracting Global Feature Importance
      Using a Model's Score
      Extracting Local Feature Importance
    Comparing Models

      Version 1: The Report Card
      Version 2: More Powerful, More Unclear
      Version 3: Understandable Recommendations
    Generating Editing Recommendations
    Conclusion
Part IV. Deploy and Monitor
  8. Considerations When Deploying Models
    Data Concerns
      Data Ownership
      Data Bias
      Systemic Bias
    Modeling Concerns
      Feedback Loops
      Inclusive Model Performance
      Considering Context
      Adversaries
      Abuse Concerns and Dual-Use
    Chris Harland: Shipping Experiments
     Conclusion
  9. Choose Your Deployment Option
    Server-Side Deployment
      Streaming Application or API
      Batch Predictions
    Client-Side Deployment
      On Device
      Browser Side
    Federated Learning: A Hybrid Approach
    Conclusion
  10. Build Safeguards for Models
    Engineer Around Failures
      Input and Output Checks
      Model Failure Fallbacks
    Engineer for Performance
      Scale to Multiple Users
      Model and Data Life Cycle Management
      Data Processing and DAGs
    Ask for Feedback
    Chris Moody: Empowering Data Scientists to Deploy Models
    Conclusion
  11. Monitor and Update Models
    Monitoring Saves Lives
      Monitoring to Inform Refresh Rate
      Monitor to Detect Abuse
    Choose What to Monitor
      Performance Metrics
      Business Metrics
    CI/CD for ML
      A/B Testing and Experimentation
      Other Approaches
    Conclusion

Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032